OHSU discovery may lead to new treatment for ALS

July 18, 2012

Researchers at Oregon Health & Science University School of Dentistry have discovered that TDP-43, a protein strongly linked to ALS (Amyotrophic Lateral Sclerosis) and other neurodegenerative diseases, appears to activate a variety of different molecular pathways when genetically manipulated. The findings have implications for understanding and possibly treating ALS and neurodegenerative diseases such as Alzheimer's and Parkinson's.

ALS affects two in 100,000 adults in the United States annually and the prognosis for patients is grim.The new discovery is published online in G3: Genes, Genomes, Genetics (and the July 2012 print issue of G3).

Using a fruit fly model, the OHSU team genetically increased or eliminated TDP-43 to study its effect on the central nervous system. By using massively parallel sequencing methods to profile the expression of genes in the central nervous system, the team found that the loss of TDP-43 results in widespread gene activation and altered splicing, much of which is reversed by rescue of TDP-43 expression. Although previous studies have implicated both absence and over expression of TDP-43 in ALS, the OHSU study showed little overlap in the gene expression between these two manipulations, suggesting that the bulk of the genes affected are different.

"Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release and endocytosis," said Dennis Hazelett, Ph.D., lead author of the study. "We also uncovered a potential novel regulation of several pathways, many targets of which appear to be conserved."

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

Related Stories

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.