Scientists discover an epigenetic cause of osteoarthritis

July 6, 2012

In what could be a breakthrough in the practical application of epigenetic science, U.K. scientists used human tissue samples to discover that those with osteoarthritis have a signature epigenetic change (DNA methylation) responsible for switching on and off a gene that produces a destructive enzyme called MMP13. This enzyme is known to play a role in the destruction of joint cartilage, making MMP13 and the epigenetic changes that lead to its increased levels, prime targets for osteoarthritis drug development. In addition to offering a new epigenetic path toward a cure for osteoarthritis, this research also helps show how epigenetic changes play a role in diseases outside of cancer. This finding was recently published online in the FASEB Journal.

"As the population gets older, osteoarthritis presents increasing social and economic problems," said David A. Young, Ph.D., a researcher involved in the work from the Musculoskeletal Research Group at the Institute of Cellular Medicine at Newcastle University in Newcastle upon Tyne in the United Kingdom. "Our work provides a better understanding of the events that cause during osteoarthritis and provides hope that tailored drug development to prevent the progress of disease will improve the quality of life and mobility of many ."

To make the discovery, Young and colleagues compared the extent to which DNA methylation was different in cartilage from patients suffering from osteoarthritis and healthy people of similar age. They found that at one small position, the gene for MMP13 had less DNA methylation in diseased patients. Then they confirmed that reduced methylation of this gene increases levels of the destructive enzyme MMP13.

"We've already seen how epigenetics has advanced our approach to cancer. Now we're seeing it with other diseases and even exercise." said Gerald Weissmann, M.D., Editor-in-Chief of the . "This study not only lays the groundwork for a new understanding of osteoarthritis, but also shows that the old 'either/or' nature v. nurture argument is outdated: epigenetics teaches us that nature (the daily wear and tear of joints) regulates nurture (the genes in our cartilage) to cause arthritis."

Explore further: Epigenetics alters genes in rheumatoid arthritis

More information: Catherine Bui, Matt J. Barter, Jenny L. Scott, Yaobo Xu, Martin Galler, Louise N. Reynard, Andrew D. Rowan, and David A. Young. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. July 2012 26:3000-3011; doi:10.1096/fj.12-206367

Related Stories

Epigenetics alters genes in rheumatoid arthritis

July 3, 2012
It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA ...

Genes that promote cartilage healing protect against arthritis

April 27, 2012
(Medical Xpress) -- The same genes that promote healing after cartilage damage also appear to protect against osteoarthritis, a condition caused by years of wear-and-tear on the cartilage between joints, new research at Washington ...

New method could help prevent osteoarthritis

September 12, 2011
A new method is set to help doctors diagnose osteoarthritis at such an early stage that it will be possible to delay the progression of the disease by many years, or maybe even stop it entirely.

Progress in tissue engineering to repair joint damage in osteoarthritis

June 8, 2011
Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.