Scientists discover an epigenetic cause of osteoarthritis

July 6, 2012

In what could be a breakthrough in the practical application of epigenetic science, U.K. scientists used human tissue samples to discover that those with osteoarthritis have a signature epigenetic change (DNA methylation) responsible for switching on and off a gene that produces a destructive enzyme called MMP13. This enzyme is known to play a role in the destruction of joint cartilage, making MMP13 and the epigenetic changes that lead to its increased levels, prime targets for osteoarthritis drug development. In addition to offering a new epigenetic path toward a cure for osteoarthritis, this research also helps show how epigenetic changes play a role in diseases outside of cancer. This finding was recently published online in the FASEB Journal.

"As the population gets older, osteoarthritis presents increasing social and economic problems," said David A. Young, Ph.D., a researcher involved in the work from the Musculoskeletal Research Group at the Institute of Cellular Medicine at Newcastle University in Newcastle upon Tyne in the United Kingdom. "Our work provides a better understanding of the events that cause during osteoarthritis and provides hope that tailored drug development to prevent the progress of disease will improve the quality of life and mobility of many ."

To make the discovery, Young and colleagues compared the extent to which DNA methylation was different in cartilage from patients suffering from osteoarthritis and healthy people of similar age. They found that at one small position, the gene for MMP13 had less DNA methylation in diseased patients. Then they confirmed that reduced methylation of this gene increases levels of the destructive enzyme MMP13.

"We've already seen how epigenetics has advanced our approach to cancer. Now we're seeing it with other diseases and even exercise." said Gerald Weissmann, M.D., Editor-in-Chief of the . "This study not only lays the groundwork for a new understanding of osteoarthritis, but also shows that the old 'either/or' nature v. nurture argument is outdated: epigenetics teaches us that nature (the daily wear and tear of joints) regulates nurture (the genes in our cartilage) to cause arthritis."

Explore further: Epigenetics alters genes in rheumatoid arthritis

More information: Catherine Bui, Matt J. Barter, Jenny L. Scott, Yaobo Xu, Martin Galler, Louise N. Reynard, Andrew D. Rowan, and David A. Young. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. July 2012 26:3000-3011; doi:10.1096/fj.12-206367

Related Stories

Epigenetics alters genes in rheumatoid arthritis

July 3, 2012
It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA ...

Genes that promote cartilage healing protect against arthritis

April 27, 2012
(Medical Xpress) -- The same genes that promote healing after cartilage damage also appear to protect against osteoarthritis, a condition caused by years of wear-and-tear on the cartilage between joints, new research at Washington ...

New method could help prevent osteoarthritis

September 12, 2011
A new method is set to help doctors diagnose osteoarthritis at such an early stage that it will be possible to delay the progression of the disease by many years, or maybe even stop it entirely.

Progress in tissue engineering to repair joint damage in osteoarthritis

June 8, 2011
Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.