Tripping the switches on brain growth to treat depression

August 15, 2012

Depression takes a substantial toll on brain health. Brain imaging and post-mortem studies provide evidence that the wealth of connections in the brain are reduced in individuals with depression, with the result of impaired functional connections between key brain centers involved in mood regulation. Glial cells are one of the cell types that appear to be particularly reduced when analyzing post-mortem brain tissue from people who had depression. Glial cells support the growth and function of nerve cells and their connections.

Over the past several years, it has become increasingly recognized that antidepressants produce positive effects on brain structure that complement their effects on . These structural effects of antidepressants appear to depend, in large part, on their ability to raise the levels of growth factors in the brain.

In a new study, Elsayed and colleagues from the Yale University School of Medicine report their findings on a relatively novel growth factor named fibroblast growth factor-2 or FGF2. They found that FGF2 can increase the number of and block the decrease caused by chronic stress exposure by promoting the generation of new glial cells.

Senior author Dr. Ronald Duman said, "Our study uncovers a new pathway that can be targeted for . Our research shows that we can increase the production and maintenance of glial cells that are important for supporting neurons, providing an enriched environment for proper neuronal function."

To study whether FGF2 can treat depression, the researchers used rodent models where animals are subjected to various natural stressors, which can trigger behaviors that are similar to those expressed by depressed humans, such as despair and loss of pleasure. FGF2 infusions restored the deficit in glial cell number caused by . An underlying molecular mechanism was also identified when the data showed that antidepressants increase glial generation and function via increasing FGF2 signaling.

"Although more research is warranted to explore the contribution of glial cells to the antidepressant effects of FGF2, the results of this study present a fundamental new mechanism that merits attention in the quest to find more efficacious and faster-acting antidepressant drugs," concluded Duman.

"The deeper that science digs into the biology underlying antidepressant action, the more complex it becomes. Yet understanding this complexity increases the power of the science, suggesting reasons for the limitations of antidepressant treatment and pointing to novel approaches to the treatment of depression," commented Dr. John Krystal, Editor of Biological Psychiatry and Chairman of the Department of Psychiatry at the Yale University School of Medicine.

Explore further: OHSU discovery may someday lead to prevention and treatment of sudden infant death syndrome

More information: The article is "Antidepressant Effects of Fibroblast Growth Factor-2 in Behavioral and Cellular Models of Depression" by Maha Elsayed, Mounira Banasr, Vanja Duric, Neil M. Fournier, Pawel Licznerski, and Ronald S. Duman (doi: 10.1016/j.biopsych.2012.03.003). The article appears in Biological Psychiatry, Volume 72, Issue 4 (August 15, 2012)

Related Stories

OHSU discovery may someday lead to prevention and treatment of sudden infant death syndrome

February 16, 2012
Researchers at Oregon Health & Science University have discovered that brain cells commonly thought to play a supporting role actually are critically important for the growth of brainstem neurons responsible for cardiorespiratory ...

Study finds how stress, depression can shrink the brain

August 12, 2012
Major depression or chronic stress can cause the loss of brain volume, a condition that contributes to both emotional and cognitive impairment. Now a team of researchers led by Yale scientists has discovered one reason why ...

Recommended for you

Gene associated with schizophrenia risk regulates neurodevelopment

September 25, 2017
A gene associated with the risk of schizophrenia regulates critical components of early brain development, according to a new study led by researchers from Penn State University. The gene is involved in the translation of ...

Child abuse affects brain wiring

September 25, 2017
Researchers from the McGill Group for Suicide Studies, based at the Douglas Mental Health University Institute and McGill University's Department of Psychiatry, have just published research in the American Journal of Psychiatry ...

For a better 'I,' there needs to be a supportive 'we'

September 25, 2017
If you're one of those lucky individuals with high motivation and who actively pursues personal growth goals, thank your family and friends who support you.

Babies can learn that hard work pays off

September 21, 2017
If at first you don't succeed, try, try again. A new study from MIT reveals that babies as young as 15 months can learn to follow this advice. The researchers found that babies who watched an adult struggle at two different ...

Study links brain inflammation to suicidal thinking in depression

September 21, 2017
Patients with major depressive disorder (MDD) have increased brain levels of a marker of microglial activation, a sign of inflammation, according to a new study in Biological Psychiatry by researchers at the University of ...

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.