Gypsy study unravels a novel ataxia gene

August 17, 2012
Gypsy study unravels a novel ataxia gene

A WA study of an isolated population of Eastern European Gypsies known as "Bowlmakers" has unlocked clues about a serious developmental disease - congenital cerebellar ataxia.

Professor Luba Kalaydjieva and Dr Dimitar Azmanov, from The University of Western Australia, say the discovery of an important genetic mutation is likely to inspire other scientific work around the world.

The result of their research for the UWA-affiliated Western Australian Institute for Medical Research (WAIMR) was published online today in the prestigious .

It involved working collaboratively with other Australian and European researchers to discover mutations within a gene which has never before been linked to this form of heredity ataxia in humans.

Ataxias are a large group of neurodegenerative disorders that affect the ability to maintain balance, and learn and maintain motor skills. While many genes have already been implicated in hereditary ataxias, understanding their molecular basis is far from complete. New knowledge will help the understanding of normal brain development and function, and the mechanisms of degeneration.

"Gypsies are a founder population," Professor Kalaydjieva said. "They are derived from a small number of ancestors and have remained relatively isolated from surrounding populations. The Bowlmakers - known for their wooden handicrafts such as bowls and spoons - were an ideal group to study because they are a younger sub-isolate, showing limited .

"We studied a novel form of ataxia in 3 families in this ethnic group. Clinical and brain-imaging investigations were done in Bulgaria, in collaboration with radiologists from Sir Charles Gairdner Hospital and Princess Margaret Hospital, and were followed-up by genetic studies at WAIMR and the Walter and Eliza Hall Institute (WEHI), Melbourne.

"Signs of ataxia were detected in early infancy when motor skills like crawling and rolling over did not develop. The affected individuals presented with global developmental delay, ataxia and intellectual deficit. MRI scans showed signs of degeneration of the cerebellum, which is part of the brain controlling motor and learning skills. Overall, the life expectancy is not decreased but the quality of life is severely affected.

"The parents of the affected individuals did not present with any clinical symptoms of the ataxia, suggesting recessive inheritance," Dr Azmanov said. "Our genetic studies showed unique changes in the gene encoding metabotropic glutamate receptor 1 (GRM1), which is important for the normal development of the cerbellar cortex. The mutations inherited by all affected individuals from their unaffected carrier parents dramatically altered the structure of the GRM1 receptor."

Professor Kalaydjieva said the exact pathogenetic mechanisms leading to the clinical manifestations and cerebellar degeneration are yet to be explained and that this opens novel research avenues for the wider scientific community. "It also remains to be seen if other patients around the world carry mutations in GRM1," she said.

Explore further: New cerebellar ataxia gene identified in dogs

Related Stories

New cerebellar ataxia gene identified in dogs

June 18, 2012
Researchers at the University of Helsinki and the Folkhälsan Research Center, Finland, have identified the genetic cause of early-onset progressive cerebellar degeneration the Finnish Hound dog breed. The study, led ...

Step closer to understanding childhood degenerative brain disease

July 3, 2012
(Medical Xpress) -- Researchers at the Australian Institute for Bioengineering and Nanotechnology (AIBN) are a step closer to understanding and combating the degenerative brain disease ataxia-telangiectasia.

Smoking cessation drug improves walking function in patients with spinocerebellar ataxia type 3

February 22, 2012
A nicotinic drug approved for smoking cessation significantly improved the walking ability of patients suffering from an inherited form of ataxia, reports a new clinical study led by University of South Florida researchers.

Recommended for you

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.