Irony seen through the eye of MRI

August 3, 2012, CNRS

In the cognitive sciences, the capacity to interpret the intentions of others is called “Theory of Mind” (ToM). This faculty is involved in the understanding of language, in particular by bridging the gap between the meaning of the words that make up a statement and the meaning of the statement as a whole. In recent years, researchers have identified the neural network dedicated to ToM, but no one had yet demonstrated that this set of neurons is specifically activated by the process of understanding of an utterance.

This has now been accomplished: a French team has shown that the activation of the ToM neural network increases when an individual is reacting to ironic statements. Published in Neuroimage, these findings represent an important breakthrough in the study of Theory of Mind and linguistics, shedding light on the mechanisms involved in interpersonal communication.

In our communications with others, we are constantly thinking beyond the basic meaning of words. For example, if asked, “Do you have the time?” one would not simply reply, “Yes.” The gap between what is said and what it means is the focus of a branch of linguistics called pragmatics. In this science, “Theory of Mind” (ToM) gives listeners the capacity to fill this gap. In order to decipher the meaning and intentions hidden behind what is said, even in the most casual conversation, ToM relies on a variety of verbal and non-verbal elements: the words used, their context, intonation, “body language,” etc.

Within the past 10 years, researchers in cognitive neuroscience have identified a neural network dedicated to ToM that includes specific areas of the brain: the right and left temporal parietal junctions, the medial prefrontal cortex and the precuneus. To identify this network, the researchers relied primarily on non-verbal tasks based on the observation of others’ behavior. Today, researchers at L2C2 (Laboratoire sur le Langage, le Cerveau et la Cognition, Laboratory on Language, the Brain and Cognition, CNRS / Université Claude Bernard-Lyon 1) have established, for the first time, the link between this neural network and the processing of implicit meanings.

To identify this link, the team focused their attention on irony. An ironic statement usually means the opposite of what is said. In order to detect irony in a statement, the mechanisms of ToM must be brought into play. In their experiment, the researchers prepared 20 short narratives in two versions, one literal and one ironic. Each story contained a key sentence that, depending on the version, yielded an ironic or literal meaning. For example, in one of the stories an opera singer exclaims after a premiere, “Tonight we gave a superb performance.” Depending on whether the performance was in fact very bad or very good, the statement is or is not ironic.

The team then carried out functional [2] (fMRI) analyses on 20 participants who were asked to read 18 of the stories, chosen at random, in either their ironic or literal version. The participants were not aware that the test concerned the perception of irony. The researchers had predicted that the participants’ ToM neural networks would show increased activity in reaction to the ironic sentences, and that was precisely what they observed: as each key sentence was read, the network activity was greater when the statement was ironic. This shows that this network is directly involved in the processes of understanding irony, and, more generally, in the comprehension of language.

Next, the L2C2 researchers hope to expand their research on the ToM network in order to determine, for example, whether test participants would be able to perceive irony if this network were artificially inactivated.

Explore further: When making meaning of the world, the brain is a multi-tasker

More information: “Neural evidence that utterance-processing entails mentalizing: The case of irony.” - Spotorno N, Koun E, Prado J, Van Der Henst JB, Noveck IA Neuroimage, July 2012

Related Stories

When making meaning of the world, the brain is a multi-tasker

January 23, 2012
(Medical Xpress) -- How does the brain confer meaning on the things we perceive in the world? “Many of us favor the theory that, whether it comes in through the eyes or ears, through reading [or other stimuli], it’s ...

Siblings play key role in child development

April 8, 2011
University of Queensland researchers are exploring the influence siblings may have on the social behaviour of autistic children.

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.