Too much protein HUWE1 causes intellectual disability

August 31, 2012

Two to three percent of the children are born with an intellectual disability. Possibly by a genetic defect, but in 80% of these cases, we do not know – yet - which genes are responsible. VIB researchers at KU Leuven show that increased production of the HUWE1 protein is the cause in some patients.

Guy Froyen (VIB/KU Leuven): "The fact that HUWE1 regulates the dose of several other proteins in the brains, has an important impact on the quest for new therapies. It would then be possible to intervene in these different proteins. Research into the role of HUWE1 has already started in the lab."

Defects on the X-chromosome

can be due to external factors such as at birth or to defects in the . In genetic (hereditary) causes, the exact identification of the defect is crucial for the of the patient or to estimate the risk when having children. It is estimated that approximately 15% of patients have a defect that lies on the X-chromosome. This is called X-linked 'intellectual disability' (XLID). Despite extensive research, in half of XLID-patients, the responsible gene responsible has not yet been identified.

HUWE1 identified as culprit

Guy Froyen and his colleagues (VIB - KU Leuven) continue their research to find new that may cause XLID. Several years ago, they showed that the duplication of a fragment of the X-chromosome leads to a too high concentration of HSD17B10 and HUWE1 proteins.

Guy Froyen: "We knew then that these two proteins could play an important role in the (development of) the memory center in the brains, but we did not yet know which gene was the cause for the increased dose of XLID. Through additional research, including the DNA of 6 additional families from Europe, Australia and South Africa, we now know that HUWE1 is the crucial factor, and that a concentration increase of HUWE1 leads to intellectual disability. "

Consequences for detecting and treating XLMR

The research by Guy Froyen and his colleagues offers new perspectives for the detection and treatment of XLID. This allows for tests to be designed with which the duplication of and errors in HUWE1 are searched. For the development of a new treatment for XLID, further research is required. First of all, scientists must better understand the role of HUWE1 in the body, more specifically in the brains.

Explore further: Monogenic defects responsible for intellectual disability and related disorders

Related Stories

Monogenic defects responsible for intellectual disability and related disorders

September 21, 2011
(Medical Xpress) -- For over 15 years, genome research has focussed – largely unsuccessfully – on the quest for common genetic risk factors for widespread diseases and conditions, such as diabetes, high blood pressure, ...

Biomarker predicts response to cancer treatment

May 21, 2012
VIB researcher Diether Lambrechts, associated with KU Leuven, has discovered a biomarker that might potentially predict which patients will benefit more from treatment with bevacizumab (Avastin). If validated, this discovery ...

Intellectual disability is frequently caused by non-hereditary genetic problems

April 18, 2011
Mutations in a group of genes associated with brain activity frequently cause intellectual disability, according to a study led by scientists affiliated with the University of Montreal and the research centre at the Centre ...

Recommended for you

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.