Too much protein HUWE1 causes intellectual disability

August 31, 2012

Two to three percent of the children are born with an intellectual disability. Possibly by a genetic defect, but in 80% of these cases, we do not know – yet - which genes are responsible. VIB researchers at KU Leuven show that increased production of the HUWE1 protein is the cause in some patients.

Guy Froyen (VIB/KU Leuven): "The fact that HUWE1 regulates the dose of several other proteins in the brains, has an important impact on the quest for new therapies. It would then be possible to intervene in these different proteins. Research into the role of HUWE1 has already started in the lab."

Defects on the X-chromosome

can be due to external factors such as at birth or to defects in the . In genetic (hereditary) causes, the exact identification of the defect is crucial for the of the patient or to estimate the risk when having children. It is estimated that approximately 15% of patients have a defect that lies on the X-chromosome. This is called X-linked 'intellectual disability' (XLID). Despite extensive research, in half of XLID-patients, the responsible gene responsible has not yet been identified.

HUWE1 identified as culprit

Guy Froyen and his colleagues (VIB - KU Leuven) continue their research to find new that may cause XLID. Several years ago, they showed that the duplication of a fragment of the X-chromosome leads to a too high concentration of HSD17B10 and HUWE1 proteins.

Guy Froyen: "We knew then that these two proteins could play an important role in the (development of) the memory center in the brains, but we did not yet know which gene was the cause for the increased dose of XLID. Through additional research, including the DNA of 6 additional families from Europe, Australia and South Africa, we now know that HUWE1 is the crucial factor, and that a concentration increase of HUWE1 leads to intellectual disability. "

Consequences for detecting and treating XLMR

The research by Guy Froyen and his colleagues offers new perspectives for the detection and treatment of XLID. This allows for tests to be designed with which the duplication of and errors in HUWE1 are searched. For the development of a new treatment for XLID, further research is required. First of all, scientists must better understand the role of HUWE1 in the body, more specifically in the brains.

Explore further: Monogenic defects responsible for intellectual disability and related disorders

Related Stories

Monogenic defects responsible for intellectual disability and related disorders

September 21, 2011
(Medical Xpress) -- For over 15 years, genome research has focussed – largely unsuccessfully – on the quest for common genetic risk factors for widespread diseases and conditions, such as diabetes, high blood pressure, ...

Biomarker predicts response to cancer treatment

May 21, 2012
VIB researcher Diether Lambrechts, associated with KU Leuven, has discovered a biomarker that might potentially predict which patients will benefit more from treatment with bevacizumab (Avastin). If validated, this discovery ...

Intellectual disability is frequently caused by non-hereditary genetic problems

April 18, 2011
Mutations in a group of genes associated with brain activity frequently cause intellectual disability, according to a study led by scientists affiliated with the University of Montreal and the research centre at the Centre ...

Recommended for you

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

Attitudes on human genome editing vary, but all agree conversation is necessary

August 10, 2017
In early August 2017, an international team of scientists announced they had successfully edited the DNA of human embryos. As people process the political, moral and regulatory issues of the technology—which nudges us closer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.