Real time optical detection of medical biomarkers shows real promise

August 20, 2012 By Ashley Duvelius
Real time optical detection of medical biomarkers shows real promise
Diabetes Sensor simulation using standard lab equipment.

Through the efforts and successes of University of Cincinnati researchers, we will one day live in a world with inexpensive, portable detection devices for home use. The application of direct concern now is a device to detect diabetes without drawing a single drop of blood. Thanks to Anastasios Angelopoulos, associate professor in the School of Energy, Environmental, Biological, and Medical Engineering (SEEBME), and his team of colleagues and students at UC's College of Engineering and Applied Science, one day soon, diabetics will simply exhale into a small, hand-held device that detects and measures acetone in their breath. Acetone is proving itself to be a positive indicator of blood glucose levels.

Angelopoulos and doctoral student Adam Worrall recently presented their work titled “Real Time Optical Detection of Medical Biomarkers and Hazardous Materials Utilizing Polymer Catalyst Membranes” at the Ohio Innovation Sensor Summit in Dayton, Ohio. This annual summit serves to provide opportunities for companies to explore new concepts as well as their marketability. Angelopoulos' collaborators on this work include Jonathan A. Bernstein, MD, UC College of Medicine clinic professor, and Doug McClelland, president of Mound Technical Solutions in Miamisburg, Ohio.

The team’s research focuses on developing an inexpensive, portable detection device to detect gaseous biomarkers and hazards. Existing detection methods are typically bulky and time intensive, limiting the ability to detect such materials in the home, office or workplace. Angelopoulos aims to make the method yield instant results, as a real-time device. The researchers have recently made giant strides toward such a novel tool.

Angelopoulos and his team have created a method for the detection of low concentrations of harmful compounds (volatile organic compounds) in the body. This approach uses perfluorosulfonic acid (PSA) polymer membranes as a catalyst that shows color-coded chemical results, called chemselective colorimetric reactions.
 
These results are ideal for an individual to use at home as they are simple to read and understand. The less intense the color- the lower the blood glucose levels and the greater the color intensity means that are elevated. Angelopoulos plans to make a color intensity chart for users to identify their specific levels of blood glucose based on the catalyzed color.
 
PSA ionomers have been found to work well in the detection of , formaldehyde and various anhydrides in the presence of resorcinol. Through the use of visible light spectroscopy, researchers can selectively detect unique products formed by the reactions. This allows them to determine how much exposure an individual has experienced. Of particular interest to the team is the detection of acetone in human breath as the basis for a revolutionary blood glucose monitor.

Angelopoulos and his team have run into a few obstacles. Chief among these is water. Water is the largest single compound in human breath and interferes with acetone measurement as it readily absorbs into the PSA polymer membrane that is acting as the catalyst. This absorption causes swelling and interferes with the optically sensitive results. The researchers hope to solve this problem by altering the PSA membrane to limit the effects of humidity on the reaction.
 
Although their research is ground-breaking, commercializing the team’s palm-sized, portable monitor is several years off. Satisfying rigorous FDA regulations and extensive clinical testing are needed before commercialization can be realized.
 
Their discovery of the PSA polymer as a catalyst has opened a wide range of applications and what follows is seemingly limitless. “We have created a platform technology that is truly novel,” Angelopoulos reflects.

Explore further: Color-changing contact lenses to help diabetics (w/ Video)

Related Stories

Color-changing contact lenses to help diabetics (w/ Video)

May 23, 2012
For the millions of Americans with diabetes, the inconvenient and often painful method of testing blood sugar levels is a way of life. But research and innovative product design by scientists at The University of Akron may ...

Scientists develop ultra-sensitive test that detects diseases in their earliest stages

May 27, 2012
Scientists have developed an ultra-sensitive test that should enable them to detect signs of a disease in its earliest stages, in research published today in the journal Nature Materials.

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.