Scientists find new mechanism behind resistance to cancer treatment

August 5, 2012

Developing resistance to chemotherapy is a nearly universal, ultimately lethal consequence for cancer patients with solid tumors – such as those of the breast, prostate, lung and colon – that have metastasized, or spread, throughout the body. A team of scientists led by Fred Hutchinson Cancer Research Center has discovered a key factor that drives this drug resistance – information that ultimately may be used to improve the effectiveness of therapy and buy precious time for patients with advanced cancer. They describe their findings online Aug. 5 in advance of print publication in Nature Medicine.

"Cancer cells inside the body live in a very complex environment or neighborhood. Where the cell resides and who its neighbors are influence its response and to therapy," said senior author Peter S. Nelson, M.D., a member of the Hutchinson Center's Human Biology Division.

Nelson and colleagues found that a type of normal, noncancerous cell that lives in cancer's neighborhood – the fibroblast – when exposed to chemotherapy sustains DNA damage that drives the production of a broad spectrum of growth factors that stimulate cancer growth. Under normal circumstances, fibroblasts help maintain the structural integrity of connective tissue, and they play a critical role in wound healing and collagen production.

Specifically, the researchers found that DNA-damaging cancer treatment coaxes fibroblasts to crank out a protein called WNT16B within the tumor neighborhood, or microenvironment, and that high levels of this protein enable cancer cells to grow, invade surrounding tissue and resist chemotherapy.

The researchers observed up to 30-fold increases in WNT production – a finding that was "completely unexpected," Nelson said. The WNT family of genes and proteins plays an important role in normal development and also in the development of some cancers but, until now, was not known to play a significant role in treatment resistance.

This discovery suggests that finding a way to block this treatment response in the tumor microenvironment may improve the effectiveness of therapy.

"Cancer therapies are increasingly evolving to be very specific, targeting key molecular engines that drive the cancer rather than more generic vulnerabilities, such as damaging DNA. Our findings indicate that the tumor microenvironment also can influence the success or failure of these more precise therapies." In other words, the same cancer cell, when exposed to different "neighborhoods," may have very different responses to treatment.

The major clinical reason that chemotherapy ultimately fails in the face of advanced cancer, Nelson said, is because the doses necessary to thoroughly wipe out the cancer would also be lethal to the patient. "In the laboratory we can 'cure' most any cancer simply by giving very high doses of toxic therapies to cancer cells in a petri dish. However, in people, these high doses would not only kill the cancer cells but also normal cells and the host." Therefore, treatments for common solid tumors are given in smaller doses and in cycles, or intervals, to allow the normal cells to recover. This approach may not eradicate all of the tumor cells, and those that survive can evolve to become resistant to subsequent rounds of anti-cancer therapy.

For the study the team of researchers – which also involved investigators at the University of Washington, Oregon Health and Science University, the Buck Institute for Research on Aging, the Lawrence Berkeley National Laboratory – examined from prostate, breast and ovarian who had been treated with .

"This study is an example of collaborative, translational research that capitalizes on years of federally funded investments into the development of tissue banks and clinical trials in which we were able to track long-term patient outcomes. Investing in this type of infrastructure is critical but may take many years to see payoff," said Nelson, who serves as principal investigator of the Pacific Northwest Prostate SPORE, a federally funded, multi-institution research consortium led by the Hutchinson Center.

Explore further: Fibroblasts contribute to melanoma tumor growth: study

More information: “Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B,” Nature Medicine, DOI:10.1038/nm.2890

Related Stories

Fibroblasts contribute to melanoma tumor growth: study

January 5, 2012
Fibroblasts, cells that play a role in the structural framework of tissues, play an apparent role in melanoma tumor growth. Fibroblasts also contribute to melanoma drug resistance and may also facilitate the "flare" response ...

Curcumin compound improves effectiveness of head and neck cancer treatment

May 19, 2011
A primary reason that head and neck cancer treatments fail is the tumor cells become resistant to chemotherapy drugs. Now, researchers at the University of Michigan Comprehensive Cancer Center have found that a compound derived ...

Researchers map genome of advanced, lethal prostate cancers and discover 'hypermutation'

September 26, 2011
A team of researchers at Fred Hutchinson Cancer Research Center and the University of Washington has conducted the first comprehensive assessment of every gene in the genome of advanced, lethal prostate cancer. Until now, ...

Study reveals how normal cells fuel tumor growth

December 21, 2011
A new study published in the journal Nature Cell Biology has discovered how normal cells in tumors can fuel tumor growth.

Cancer stem cells recruit normal stem cells to fuel ovarian cancer

July 18, 2011
Researchers at the University of Michigan Comprehensive Cancer Center have found that a type of normal stem cell fuels ovarian cancer by encouraging cancer stem cells to grow.

MicroRNA controls malignancy and resistance of breast cancer cells

May 4, 2012
Many breast cancer patients are treated with a drug called tamoxifen. The substance blocks the effect of estrogen and thus suppresses the growth signals of this hormone in cancer cells. When resistance to the drug develops, ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.