A new starring role for astrocytes

August 10, 2012
Figure 1: Healthy astrocytes send separate signals through each process, while astrocytes in neurological disorders send synchronous signals to their entire network. © 2012 Katsuhiko Mikoshiba, Misa Arizono and Hiroko Bannai, RIKEN Brain Science Institute

Astrocytes, previously thought of as helper cells for neurons, have recently been shown to send signals themselves. The signals are chemical not electrical and astrocytes send them to neurons, vascular cells and other astrocytes to improve the efficiency of synaptic signaling. A team led by Katsuhiko Mikoshiba and Hiroko Bannai at the RIKEN Brain Science Institute, Wako, have described the mechanism that allows astrocytes to signal each cell in their network individually.

Named for their star-like shape, have a central ‘soma’ and many ray-like arms connecting to the cells they regulate. Healthy astrocytes send separate Ca2+ signals through each ray, called a ‘process’. Signaling was known to be regulated by a receptor in the cellular membrane called the metabotropic glutamate receptor (mGluR5), but it was unclear how the signals were confined to individual processes. Understanding this specificity may be therapeutically important because in brains affected with Alzheimer’s disease or epilepsy astrocytes send global signals, more like a megaphone broadcast than the telephone calls made by healthy astrocytes (Fig. 1).

To understand how astrocyte signaling is regulated, the researchers tagged individual mGluR5 receptors with quantum dots—semiconductor nano-crystals that emit light when excited—then observed how the receptors migrated through the fluid membrane. Video footage revealed that receptors did not pass from the process to the soma. In normal astrocytes, the mGluR5-selective diffusion barrier could, by compartmentalization of Ca2+ signaling, allow each process to regulate its contacting partners independently.

To investigate the character of the barrier, Mikoshiba’s team attempted to undermine it. Over-expression of mGluR5 overwhelmed the barrier, which they infer is made of proteins that interact with the cytosolic portion of mGluR5. Each barrier protein pairs with a single mGluR5 molecule and prevents it from crossing to the soma. However, the number of barrier proteins is finite and an overabundance of mGluR5 leaves some receptors free to cross into the soma, thus enabling propagation of global signals through every process in the astrocyte.

Experimental models of Alzheimer’s disease and epilepsy have shown increased concentrations of mGlu5 in astrocytes. The researchers believe that understanding the molecular nature of the diffusion barrier will provide new targets for the treatment of these conditions. Once they reveal the molecular nature of the barrier, the team hopes to produce a transgenic mouse lacking the astrocytic barrier protein. “We are very curious to know the effect of global astrocytic Ca2+ signaling on the neuronal network and neuro-vascular coupling,” says Mikoshiba.

Explore further: Astrocytes found to bridge gap between global brain activity and localized circuits

More information: Arizono, M., Bannai, H., Nakamura, K., Niwa, F., Enomoto, M., Matsu-ura, T., Miyamoto, A., Sherwood, M.W., Nakamura, T. & Mikoshiba, K. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Science Signaling 5, ra27 (2012). stke.sciencemag.org/cgi/conten … /sigtrans;5/218/ra27

Related Stories

Astrocytes found to bridge gap between global brain activity and localized circuits

May 11, 2012
Global network activity in the brain modulates local neural circuitry via calcium signaling in non-neuronal cells called astrocytes (Fig. 1), according to research led by Hajime Hirase of the RIKEN Brain Science Institute. ...

HIV disrupts blood-brain barrier

June 28, 2011
HIV weakens the blood-brain barrier — a network of blood vessels that keeps potentially harmful chemicals and toxins out of the brain — by overtaking a small group of supporting brain cells, according to a new study ...

Control by the matrix: Researchers decipher the role of proteins in the cell environment

December 12, 2011
How astrocytes, certain cells of the nervous system, are generated was largely unknown up to now. Bochum's researchers have now investigated what influence the cell environment, known as the extracellular matrix, has on this ...

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.