Discovering how the brain ages

September 12, 2012

Researchers at Newcastle University have revealed the mechanism by which neurons, the nerve cells in the brain and other parts of the body, age. The research, published today in Aging Cell, opens up new avenues of understanding for conditions where the aging of neurons are known to be responsible, such as dementia and Parkinson's disease.

The ageing process has its roots deep within the cells and molecules that make up our bodies. Experts have previously identified the molecular pathway that react to cell damage and stems the cell's ability to divide, known as cell senescence.

However, in cells that do not have this ability to divide, such as neurons in the brain and elsewhere, little was understood of the ageing process. Now a team of scientists at Newcastle University, led by Professor Thomas von Zglinicki have shown that these cells follow the same pathway.

This challenges previous assumptions on cell senescence and opens new areas to explore in terms of treatments for conditions such as dementia, or age-related hearing loss.

Newcastle University's Professor Thomas von Zglinicki who led the research said: "We want to continue our work looking at the pathways in as this study provides us with a new concept as to how damage can spread from the first affected area to the whole brain."

Working with the University's special colony of aged mice, the scientists have discovered that ageing in neurons follows exactly the same rules as in senescing fibroblasts, the cells which divide in the skin to repair wounds.

responses essentially re-program senescent fibroblasts to produce and secrete a host of dangerous substances including or reactive (ROS) and pro-inflammatory signalling molecules. This makes the 'rotten apple in a basket' that can damage and spoil the intact cells in their neighbourhood. However, so far it was always thought that ageing in cells that can't divide - post-mitotic, non-proliferating cells - like neurons would follow a completely different pathway.

Now, this research explains that in fact ageing in neurons follows exactly the same rules as in senescing fibroblasts.

Professor von Zglinicki, professor of Cellular Gerontology at Newcastle University said: "We will now need to find out whether the same mechanisms we detected in mouse brains are also associated with brain ageing and cognitive loss in humans. We might have opened up a short-cut towards understanding brain ageing, should that be the case."

Dr Diana Jurk, who did most of this work during her PhD in the von Zglinicki group, said: "It was absolutely fascinating to see how ageing processes that we always thought of as completely separate turned out to be identical. Suddenly so much disparate knowledge came together and made sense."

Explore further: Telomere stress reveals insight into ageing

More information: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. DOI: 10.1111/j.1474-9726.2012.00870.x. onlinelibrary.wiley.com/journa … )1474-9726/earlyview

Related Stories

Telomere stress reveals insight into ageing

March 1, 2012
Scientists at Newcastle University have unlocked clues that give us a greater understanding of the ageing process. 

Researchers move closer to delaying dementia

May 10, 2012
(Medical Xpress) -- Scientists at University of Queensland's Brain Institute are one step closer to developing new therapies for treating dementia.

Recommended for you

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.