Discovering how the brain ages

September 12, 2012, Newcastle University

Researchers at Newcastle University have revealed the mechanism by which neurons, the nerve cells in the brain and other parts of the body, age. The research, published today in Aging Cell, opens up new avenues of understanding for conditions where the aging of neurons are known to be responsible, such as dementia and Parkinson's disease.

The ageing process has its roots deep within the cells and molecules that make up our bodies. Experts have previously identified the molecular pathway that react to cell damage and stems the cell's ability to divide, known as cell senescence.

However, in cells that do not have this ability to divide, such as neurons in the brain and elsewhere, little was understood of the ageing process. Now a team of scientists at Newcastle University, led by Professor Thomas von Zglinicki have shown that these cells follow the same pathway.

This challenges previous assumptions on cell senescence and opens new areas to explore in terms of treatments for conditions such as dementia, or age-related hearing loss.

Newcastle University's Professor Thomas von Zglinicki who led the research said: "We want to continue our work looking at the pathways in as this study provides us with a new concept as to how damage can spread from the first affected area to the whole brain."

Working with the University's special colony of aged mice, the scientists have discovered that ageing in neurons follows exactly the same rules as in senescing fibroblasts, the cells which divide in the skin to repair wounds.

responses essentially re-program senescent fibroblasts to produce and secrete a host of dangerous substances including or reactive (ROS) and pro-inflammatory signalling molecules. This makes the 'rotten apple in a basket' that can damage and spoil the intact cells in their neighbourhood. However, so far it was always thought that ageing in cells that can't divide - post-mitotic, non-proliferating cells - like neurons would follow a completely different pathway.

Now, this research explains that in fact ageing in neurons follows exactly the same rules as in senescing fibroblasts.

Professor von Zglinicki, professor of Cellular Gerontology at Newcastle University said: "We will now need to find out whether the same mechanisms we detected in mouse brains are also associated with brain ageing and cognitive loss in humans. We might have opened up a short-cut towards understanding brain ageing, should that be the case."

Dr Diana Jurk, who did most of this work during her PhD in the von Zglinicki group, said: "It was absolutely fascinating to see how ageing processes that we always thought of as completely separate turned out to be identical. Suddenly so much disparate knowledge came together and made sense."

Explore further: Telomere stress reveals insight into ageing

More information: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. DOI: 10.1111/j.1474-9726.2012.00870.x. onlinelibrary.wiley.com/journa … )1474-9726/earlyview

Related Stories

Telomere stress reveals insight into ageing

March 1, 2012
Scientists at Newcastle University have unlocked clues that give us a greater understanding of the ageing process. 

Researchers move closer to delaying dementia

May 10, 2012
(Medical Xpress) -- Scientists at University of Queensland's Brain Institute are one step closer to developing new therapies for treating dementia.

Recommended for you

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

BOLD view of white matter

January 15, 2018
The brain consists of gray matter, which contains the nerve cell bodies (neurons), and white matter, bundles of long nerve fibers (axons) that until recently were considered passive transmitters of signals between different ...

Does an exploding brain network cause chronic pain?

January 12, 2018
A new study finds that patients with fibromyalgia have brain networks primed for rapid, global responses to minor changes. This abnormal hypersensitivity, called explosive synchronization (ES), can be seen in other network ...

An innovative PET tracer can measure damage from multiple sclerosis in mouse models

January 12, 2018
The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.