Gene regulation through non-coding RNAs

September 20, 2012
Gene regulation through non-coding RNAs
Credit: Thinkstock

A number non-coding RNAs are transcribed in humans but their role in the human body has not been elucidated. European scientists are deciphering the role of such RNAs in a newly discovered imprinted human genome domain.

The DLK1-GTL2 genome domain was recently discovered in 14. It is an evolutionary conserved cluster of genes which are expressed in a parent-of-origin-specific manner. It consists of at least four protein-encoding genes paternally expressed and a series of small non-coding RNA (ncRNA) genes which are on the maternal allele.

These ncRNAs include well known ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear and nucleolar RNAs (snRNAs and snoRNAs, respectively), as well as microRNAs (miRNAs). The latter more often function as post-transcriptional regulators usually resulting in translational repression or target degradation and gene silencing. In addition, myriads of long, ncRNAs of essentially unknown function have recently been identified.

The EU project 'Biological role of microRNAs in the DLK1 GTL2 imprinted domain' (Callimir) focused on elucidation of the biological role of ncRNAs and miRNAs of DLK1-GTL2 domain in the .

Callimir researchers, employing state-of-the-art approaches, gained significant insights into the role of maternally expressed ncRNAs in the DLK1-GTL2 domain. In addition, they were able to confirm the transcription of these long ncRNAs and track their localisation in the interchromatin space.

Project scientists used muscular hypertrophy in sheep as a for the identification of an essential novel class of mutations that affect miRNAs interaction with their targets. Furthermore, bioinformatics analyses of human and mice single (SNPs) databases showed a high abundance of putative that positively or negatively affect miRNA-target interaction.

These findings explain the of phenotypic variations which can be observed. This data is publicly available in the Patrocles database.

The achievements of the Callimir consortium provided new insights into the role of ncRNAs in human biology that might be useful for understanding and treating human genetic diseases.

Explore further: Non-coding RNA relocates genes when it's time to go to work

Related Stories

Non-coding RNA relocates genes when it's time to go to work

November 10, 2011
Cells develop and thrive by turning genes on and off as needed in a precise pattern, a process known as regulated gene transcription. In a paper published in the Nov. 9 issue of the Journal of Neuroscience, researchers at ...

Long non-coding RNA prevents the death of maturing red blood cells

December 7, 2011
A long non-coding RNA (lncRNA) regulates programmed cell death during one of the final stages of red blood cell differentiation, according to Whitehead Institute researchers. This is the first time a lncRNA has been found ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.