Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (top left), derived from human embryonic stem cells, could provide an economical route to produce human cancer therapeutics. Credit: iStockphoto.com/drliwa (main image)

Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research led by Jieming Zeng and Shu Wang from the A*STAR Institute of Bioengineering and Nanotechnology, Singapore.

DCs process and present antigens—substances that stimulate immune responses—to other cells of the immune system that will then eliminate pathogenic cells carrying these antigens. This ability makes DCs ideal as vaccines within the body. As such, the US recently approved the first DC-based vaccine for use. DCs sourced from another individual, however, may be attacked by the immune system of a recipient. Consequently, DC-based vaccines have been prepared using cells derived from the recipient's own body. This is expensive, the supply of cells is limited, and highly variable results have complicated the evaluation of clinical trials.

Using hESCs, however, it is possible to produce a steady supply of DCs in unlimited numbers, under strict quality control. But, since these DCs are still susceptible to , Zeng, Wang and co-workers enlisted the aid of invariant natural killer T (iNKT) cells. These cells can be stimulated by compounds attached to molecules of the glycoprotein CD1d and used to boost the activity of DCs, thereby enabling them to trigger the immune response before being eliminated.

First the researchers added genes to DCs generated from hESCs to produce extra CD1d. The greater amount of this glycoprotein produced by the cells then triggered an expansion of iNKT cells in the presence of α-galactosylceramide (α-GC), a ligand or compound which binds to iNKT cells.

Subsequently, they found that α-GC was unnecessary for inducing an anti-. This is advantageous because previous studies by others with mice had shown that using α-GC for this purpose can lead to uncontrolled iNKT activation. In fact, the researchers showed that pulsing the modified DCs with melanoma antigen was sufficient to prime immune T cells against melanoma tumor cells. The same strategy worked with DCs derived from human monocytes, a type of white blood cell.

"The ability to generate large amounts of uniform hESC-DCs competent in inducing antitumor immunity indicates that they could be used as an unlimited cell source to produce off-the-shelf DC vaccines, to overcome the drawbacks of using an individual's own cells," Wang says. "We are now focusing on developing a simpler process to produce DCs with similar or even better capabilities."

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Zeng, J., Shahbazi, M., Wu, C., Toh, H. C. & Wang, S. Enhancing immunostimulatory function of human embryonic stem cell-derived dendritic cells by CD1d overexpression. The Journal of Immunology 188, 4297–4304 (2012). www.jimmunol.org/content/188/9/4297

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Rare immune cell is asset and liability in fighting infection

August 26, 2011
The same trait that makes a rare immune cell invaluable in fighting some infections also can be exploited by other diseases to cause harm, two new studies show.

Dendritic cell subtype protects against atherosclerosis

November 10, 2011
Atherosclerosis, commonly referred to as "hardening of the arteries," is a major risk factor for heart attack and stroke. The cause of atherosclerosis is not well understood but, for some time, chronic inflammatory immune ...

Recommended for you

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.