Noisy surroundings take toll on short-term memory

September 6, 2012
While participants kept the numbers they had heard in mind, alpha wave increased, peaking, when bad acoustics were combined with longer strings of numbers. Credit: Max Planck Society

Have you ever noticed how tiresome it can be to follow a conversation at a noisy party? Rest assured: this is not necessarily due to bad hearing – although that might make things worse. Scientists at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig have found that adverse listening situations are difficult for the brain, partly because they draw on the same, limited resources supporting our short-term memory. The new findings are particularly relevant to understanding the cognitive consequences of hearing damage, a condition that affects an increasing number of people.

Whether we are engaged in small talk or trying to memorise a telephone number - it is our short-term memory that ensures we don't lose track. But what if the very same memory gets additionally taxed because the words to be remembered are hard to understand? This is suggested by a new study conducted by Jonas Obleser and his team at the Research Group "Auditory Cognition"

In the experiment, listeners were asked to memorise a few digits they heard (e.g., "2…5…9…3") for just over a second. This is a very easy task, and when asked whether they remembered hearing a certain digit, listeners answered correctly 90 percent of the time. During this process, Obleser and his colleagues were using magnetoencephalography to measure so-called "" in the brain. "The brain tends to time its activity in rhythmic waves with the consisting of 8 to 12 activity waves per second", Obleser explains. "The reason we were interested in this particular rhythm is that the strength of the alpha waves has been shown to indicate how much information you are currently storing in your short-term memory, with more vigorous alpha waves signalling a busier time."

As expected, alpha waves were stronger when had more digits to memorise. But surprisingly, the strength of the alpha waves also depended on the acoustic format of the speech signal, which the scientists varied from clear to heavily degraded. The harder the digits were to understand, the stronger the alpha waves became. Speech content (e.g., a phone number you would like to remember) and speech acoustics (such as the noisy party at which you overheard that phone number) thus draw on a shared brain resource.

In our everyday lives our has a natural limit, which may be reached faster in noisy surroundings. These findings may be particularly relevant to populations who are constantly receiving such adverse input: People with hearing damage, or – most drastically – people who have restored but very fragmented hearing through an artificial inner ear, the so-called cochlear implant.

Further studies could examine in more detail how chronic sensory degradations affect the executive functions of the brain.

Explore further: Short-term memory is based on synchronized brain oscillations

More information: Obleser, J., Woestmann, M., Hellbernd, N., Wilsch, A. , Maess, B. (2012). Adverse listening conditions and memory load drive a common alpha oscillatory network. Journal of Neuroscience. September 5, 2012, 32(36):12376 –12383

Related Stories

Short-term memory is based on synchronized brain oscillations

January 31, 2012
Scientists have now discovered how different brain regions cooperate during short-term memory.

Meditation may help the brain 'turn down the volume' on distractions

April 21, 2011
The positive effects of mindfulness meditation on pain and working memory may result from an improved ability to regulate a crucial brain wave called the alpha rhythm. This rhythm is thought to "turn down the volume" on distracting ...

Mild hearing loss linked to brain atrophy in older adults

August 31, 2011
A new study by researchers from the Perelman School of Medicine at the University of Pennsylvania shows that declines in hearing ability may accelerate gray mater atrophy in auditory areas of the brain and increase the listening ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.