Mamba venom holds promise for pain relief

October 3, 2012

Scientists have used the venom of Africa's lethal black mamba to produce a surprising outcome in mice which they hope to replicate in humans—effective pain relief without toxic side effects.

French researchers wrote in the journal Nature Wednesday that peptides isolated from black mamba venom may be a safer pain killer than morphine.

In mice at least, the peptides bypass the receptors in the brain that are targeted by morphine and other opioid compounds which sometimes cause side-effects like or nausea.

Nor do the peptides pose the same risk of addiction or drug abuse.

"We have identified new natural peptides, mambalgins, from the venom of the snake Black Mamba that are able to significantly reduce pain in mice without ," study co-author Anne Baron of France's Centre national de la recherche scientifique (national research institute) told AFP.

"It is remarkable that this was made possible from the deadly venom of one of the most ," she said of the study published in the journal Nature.

"(It) is surprising that mambalgins, which represent less than 0.5 percent of the total venom , has analgesic (pain-relief) properties without neurotoxicity in mice, whereas the total venom of black mamba is lethal and among the most neurotoxic ones."

Morphine is often regarded as the best drug to relieve severe pain and suffering, but it has several side effects and can be habit-forming.

The black mamba's venom is among the fastest acting of any snake species, and a bite will be fatal if not treated with antivenom—the poison attacking the and causing respiratory paralysis.

Mice are among the agile adder's favourite prey in the wild in eastern and southern Africa.

Baron said researchers were confident the peptides would also work in humans "and are very interesting candidates as painkillers", but much work remains to be done.

A patent has been issued and a pharmaceutical company is examining the possibilities, she said.

More information: Black mamba venom peptides target acid-sensing ion channels to abolish pain, Nature (2012) doi:10.1038/nature11494

Related Stories

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.