MRI images transplanted islet cells with help of positively charged nanoparticles

October 1, 2012

In a study to investigate the detection by MRI of six kinds of positively-charged magnetic iron oxide nanoparticles designed to help monitor transplanted islet cells, a team of Japanese researchers found that the charged nanoparticles they developed transduced into cells and could be visualized by MRI while three kinds of commercially available nanoparticles used for controls could not. The study is published in a recent special issue of Cell Medicine [3(1)], now freely available on-line.

"Our data suggests that novel, positively-charged nanoparticles can be useful MRI contrast agents to monitor islet mass after transplantation," said study co-author Hirofumi Noguchi, MD, PhD, of the Department of Gastroenterological Surgery, transplant and at the Okayama University Graduate School of Medicine, Dentistry and . "Significant graft loss immediately after islet transplantation occurs due to immunological and non-immunological events. With MRI an attractive potential tool for monitoring islet mass in vivo, efficient uptake of MRI contrast agent is required for cell labeling."

The researchers note that recent techniques of labeling islet cells with magnetic iron oxide has allowed detection of transplanted islet cells, however commercially available magnetic nanoparticles are not efficiently transduced because the cell surface is negatively charged and the negative charge of the nanoparticles. The researchers developed positively charged nanoparticles that were efficiently transduced.

"This approach could potentially be translated into clinical practice for evaluating and for monitoring therapeutic intervention during ," concluded Dr. Noguchi.

Explore further: Mouse pancreatic stem cells successfully differentiate into insulin producing cells

More information: Oishi, K.; Noguchi, H.; Saito, H.; Yukawa, H.; Miyamoto, Y.; Ono, K.; Murase, K.; Sawada, M.; Hayashi, S. Novel positive-charged nanoparticles for efficient magnetic resonance imaging of islet transplantation. Cell Med. 3(1):43-49; 2012. http://www.ingentaconnect.com/content/cog/cm

Related Stories

Mouse pancreatic stem cells successfully differentiate into insulin producing cells

September 25, 2012
In a study to investigate how transplanted islet cells can differentiate and mature into insulin-producing pancreatic cells, a team of Japanese researchers found that using a specific set of transcription factors (proteins ...

Recommended for you

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.