MRI images transplanted islet cells with help of positively charged nanoparticles

October 1, 2012

In a study to investigate the detection by MRI of six kinds of positively-charged magnetic iron oxide nanoparticles designed to help monitor transplanted islet cells, a team of Japanese researchers found that the charged nanoparticles they developed transduced into cells and could be visualized by MRI while three kinds of commercially available nanoparticles used for controls could not. The study is published in a recent special issue of Cell Medicine [3(1)], now freely available on-line.

"Our data suggests that novel, positively-charged nanoparticles can be useful MRI contrast agents to monitor islet mass after transplantation," said study co-author Hirofumi Noguchi, MD, PhD, of the Department of Gastroenterological Surgery, transplant and at the Okayama University Graduate School of Medicine, Dentistry and . "Significant graft loss immediately after islet transplantation occurs due to immunological and non-immunological events. With MRI an attractive potential tool for monitoring islet mass in vivo, efficient uptake of MRI contrast agent is required for cell labeling."

The researchers note that recent techniques of labeling islet cells with magnetic iron oxide has allowed detection of transplanted islet cells, however commercially available magnetic nanoparticles are not efficiently transduced because the cell surface is negatively charged and the negative charge of the nanoparticles. The researchers developed positively charged nanoparticles that were efficiently transduced.

"This approach could potentially be translated into clinical practice for evaluating and for monitoring therapeutic intervention during ," concluded Dr. Noguchi.

Explore further: Mouse pancreatic stem cells successfully differentiate into insulin producing cells

More information: Oishi, K.; Noguchi, H.; Saito, H.; Yukawa, H.; Miyamoto, Y.; Ono, K.; Murase, K.; Sawada, M.; Hayashi, S. Novel positive-charged nanoparticles for efficient magnetic resonance imaging of islet transplantation. Cell Med. 3(1):43-49; 2012. http://www.ingentaconnect.com/content/cog/cm

Related Stories

Mouse pancreatic stem cells successfully differentiate into insulin producing cells

September 25, 2012
In a study to investigate how transplanted islet cells can differentiate and mature into insulin-producing pancreatic cells, a team of Japanese researchers found that using a specific set of transcription factors (proteins ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.