Protein regulation linked to intellectual disability

October 25, 2012

Genetics researchers at the University of Adelaide have solved a 40-year mystery for a family beset by a rare intellectual disability – and they've discovered something new about the causes of intellectual disability in the process.

While many intellectual disabilities are caused directly by a genetic mutation in the so-called "protein coding" part of our genes, the researchers found that in their case the answer laid outside the gene and in the regulation of proteins.

Protein regulation involves the switching on or off of a protein by specific genes. As a consequence in this case, either too much or too little of this protein can trigger the disability.

The team has studied a large (anonymous) Australian family of 100 people, who for generations have not known the source of their genetically inherited condition.

The disability – which results in a lower IQ, behavioral problems such as aggression, and , and is linked with developmental delays, epilepsy, schizophrenia and other problems – affects only the male family members and can be passed on by the female family members to their children.

taken from the family and laboratory testing involving mice have confirmed that the protein produced by the HCFC1 ( factor C1) gene is the cause of this disability.

"The causes of intellectual disability generally are highly variable and the in particular are numerous. The vast majority of intellectual disabilities are due to in proteins, so it was rather unexpected that we found this particular disability to be due to a regulatory mutation," says the leader of the study, Professor Jozef Gecz from the University of Adelaide's School of Pediatrics and Reproductive Health.

"We've been researching this specific disability for 10 years and it's taken us the last three years to convince ourselves that the protein regulation is the key," he says.

"For the family, this means we now have a genetic test that will determine whether or not a female member of the family is a carrier, which brings various benefits for the family.

"From a scientific point of view, this widens our viewpoint on the causes of these disabilities and tells us where we should also look for answers for those families and individuals without answers.

"This is just the tip of the iceberg in understanding the impact of altered gene regulation on – the gene regulatory landscape is much bigger than the protein coding landscape. We have already found, and I would expect to continue finding, a number of other intellectual disabilities linked with over the next 20 years or so."

Professor Gecz and his team have published their findings in this month's issue of the American Journal of Human Genetics.

Explore further: New form of intellectual disability discovered

Related Stories

New form of intellectual disability discovered

April 27, 2012
Researchers at the Centre for Addiction and Mental Health (CAMH) led a study discovering a gene for a new form of intellectual disability, as well as how it likely affects cognitive development by disrupting neuron functioning.

Study finds large proportion of intellectual disability is not genetically inherited

September 26, 2012
New research published Online First in The Lancet suggests that a high proportion of severe intellectual disability results from genetic causes that are not inherited. These findings are good news for parents, indicating ...

New gene for intellectual disability discovered

July 15, 2011
A gene linked to intellectual disability was found in a study involving the Centre for Addiction and Mental Health (CAMH) – a discovery that was greatly accelerated by international collaboration and new genetic sequencing ...

Intellectual disability is frequently caused by non-hereditary genetic problems

April 18, 2011
Mutations in a group of genes associated with brain activity frequently cause intellectual disability, according to a study led by scientists affiliated with the University of Montreal and the research centre at the Centre ...

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.