New research reveals more about how the brain processes facial expressions and emotions

October 15, 2012

Research released today helps reveal how human and primate brains process and interpret facial expressions, and the role of facial mimicry in everything from deciphering an unclear smile to establishing relationships of power and status. The findings were presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

Facial mimicry—a social behavior in which the observer automatically activates the same as the person she is imitating—plays a role in learning, understanding, and rapport. Mimicry can activate muscles that control both smiles and frowns, and evoke their corresponding emotions, positive and negative. The studies reveal new roles of facial mimicry and some of its underlying .

Today's new findings show that:

  • Special brains cells dubbed "" activate in the amygdala of a monkey looking into the eyes of another monkey, even as the monkey mimics the expressions of its counterpart (Katalin Gothard, MD, PhD, abstract 402.02, see attached summary).
  • Social status and self-perceptions of power affect facial mimicry, such that powerful individuals suppress their smile mimicry towards other high-status people, while powerless individuals mimic everyone's smile (Evan Carr, BS, abstract 402.11, see attached summary).
  • Brain imaging studies in monkeys have revealed the specific roles of different regions of the brain in understanding facial identity and , including one brain region previously identified for its role in vocal processing (Shih-pi Ku, PhD, abstract 263.22, see attached summary).
  • Subconscious facial mimicry plays a strong role in interpreting the meaning of ambiguous smiles (Sebastian Korb, PhD, abstract 402.23, see attached summary).
Another recent finding discussed shows that:
  • Early difficulties in interactions between parents and infants with cleft lip appear to have a neurological basis, as change in a baby's facial structure can disrupt the way adult brains react to a child (Christine Parsons, PhD, see attached speaker's summary).
"Today's findings highlight the role of facial expressions in communication and social behavior," said press conference moderator Ruben Gur, PhD, of the University of Pennsylvania, an expert on behavior and brain function. "Brain circuits that interpret the face appear ever more specialized, from primate 'eye cells,' to brain feedback that enables us to discern meaning through facial mimicry." This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations.

Explore further: Lack of empathy following traumatic brain injury linked to reduced responsiveness to anger

More information: www.sfn.org/am2012/pdf/press/Faces.pdf

Related Stories

Lack of empathy following traumatic brain injury linked to reduced responsiveness to anger

June 28, 2011
Egocentric, self-centred, and insensitive to the needs of others: these social problems often arise in people with severe traumatic brain injury (TBI) and have been attributed in part to a loss of emotional empathy, the capacity ...

Recommended for you

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.