Researchers use stem cells to show connection between neural cell disruption and Parkinson's disease

October 18, 2012 by Bob Yirka report
Salk scientists pinpoint key player in Parkinson's disease neuron loss
The Salk researchers found that a common genetic mutation involved in Parkinson's disease deforms the membranes (green) surrounding the nuclei (blue) of neural stem cells. The discovery may lead to new ways to diagnose and treat the disease. Credit: Courtesy of the Salk Institute for Biological Studies

(Medical Xpress)—A diverse team of biologists has shown using induced pluripotent stem cells (iPSCs) that a gene mutation that causes malformations in the structure of the nuclear envelope of neural cells, is associated with Parkinson's disease. In their paper published in the journal Nature, they describe how they found iPSC cells taken from Parkinson's patients over time demonstrated the same cell disruption found in neural cells taken from other deceased patient's with the disease. They also found that by introducing a compound known to disrupt the gene mutation, that they could reverse the cell malformation.

Parkinson's disease is a of the nervous system characterized by shaking, slowness of movement and difficulty walking. Over time most patients succumb to dementia and eventually die. Much research has centered on the disruption and death of dopamine-generating cells as the root cause of the disorder despite evidence that such a disruption would not result in all of the symptoms Parkinson's patient's exhibit. For that reason, researchers have looked to other causes.

In this new effort, the researchers looked at possible reasons for disruption to the , the thin film that separates the nucleus from the in . Such disruptions have been associated with Parkinson's but no definitive correlation has been found, until now.

To gain a better understanding of what might be causing such disruptions, the research team obtained samples of induced iPSCs from Parkinson's patients and allowed them to grow in an external environment. They noted that the same disruptions occurred as the iPSCs grew into neural cells, suggesting a . Prior research had indicated that a mutation of the LRRK2 gene was connected to Parkinson's disease but no clear indication of the mechanism involved had been found. Testing the cells derived from the iPSCs showed the same mutation, implicating it as a possible cause of the disorder. The researchers also induced the mutation in human embryo stem cells and found that they too developed the same disruption as they grew into neural cells as was found with the iPSCs.

Next the researchers generated a line of iPSCs minus the mutation and found that the cells did not develop the disruptions. They followed that up by adding a chemical compound known to disrupt the mutation to already affected cells and discovered that it prevented them from being disrupted as well.

The researchers don't know why the mutation occurs but believe a new therapy for treating Parkinson's patients might be on the horizon as a result of their research.

Explore further: Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

More information: Progressive degeneration of human neural stem cells caused by pathogenic LRRK2, Nature (2012) doi:10.1038/nature11557

Abstract
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.

Press release

Related Stories

Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

January 24, 2012
Induced pluripotent stem cells (iPSC) are a promising avenue for cell replacement therapy in neurologic diseases. For example, mouse and human iPSCs have been used to generate dopaminergic (DA) neurons that improve symptoms ...

Parkinson's disease: Study of live human neurons reveals the disease's genetic origins

February 7, 2012
Parkinson's disease researchers at the University at Buffalo have discovered how mutations in the parkin gene cause the disease, which afflicts at least 500,000 Americans and for which there is no cure.

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011
In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and ...

Recommended for you

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

Tug of war between Parkinson's protein and growth factor

September 18, 2017
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

Medical history can point to earlier Parkinson's disease diagnosis

September 15, 2017
Before symptoms become pronounced, there is no reliable way to identify who is on track to develop Parkinson's disease, a debilitating movement disorder characterized by tremors, slowness of movement, stiffness, and difficulty ...

Brain rewiring in Parkinson's disease may contribute to abnormal movement

September 14, 2017
The brain's own mechanisms for dealing with the loss of dopamine neurons in Parkinson's disease may be a source of the disorder's abnormal movement, according to a Northwestern Medicine study published in Neuron.

Treating with antioxidants early in Parkinson's disease process may halt degeneration and improve neuronal function

September 7, 2017
Northwestern Medicine scientists have identified a toxic cascade that leads to neuronal degeneration in patients with Parkinson's disease (PD) and figured out how to interrupt it, reports a study to be published September ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.