Predicting aneurysms: Patient-specific information is a valuable asset in medical decision-making

November 2, 2012
Predicting aneurysms: Patient-specific information is a valuable asset in medical decision-making

Using new computer models of blood flow in the vicinity of cerebral aneurysms (dilated sections of blood vessels in the brain), it is now possible to calculate every detail of the patient-specific situation. This has resulted in powerful new techniques for predicting a further weakening or even rupture of the blood vessel's wall, and for effective intervention. Julia Mikhal was awarded a PhD on this topic by the University of Twente.

Brain aneurysms occur in about six percent of the population. They are dilated sections of blood vessels, which can deteriorate over time until the blood vessel wall ruptures, resulting in a haemorrhage. This causes a loss of mental functions and severe headaches. Haemorrhages of this kind can even be life threatening. The treatment of such patients involves complex medical decision-making. The models developed by Julia Mikhal can be of great use in this regard. She uses information obtained from , in combination with fluid dynamics models, to predict flows and forces in the affected part of the brain.

Patient specific

Using the immersed boundary method, Dr Mikhal can calculate and the forces exerted on . This allows her to perform generic and to obtain a detailed picture of individual patients' specific situations, as a function of space and time. Flow calculations reveal which parts of the are at greater or lesser risk of further deterioration. Without such information, it is difficult to make about the future development of the aneurysm. One of the insights produced by these calculations is that the larger the aneurysm, the greater the fluctuations in flow behaviour. These fluctuations are probably a reliable measure of gradually increasing risk levels.

Three-dimensional reconstruction of a section of a blood vessel in the brain, showing a highly developed aneurysm. Details of the geometry of the vessel’s wall are obtained by processing data obtained by 3DRA (3D Rotational Angiography). The blood flows from the relatively high pressure area on the left (shown in red) to the lower pressure area on the right (shown in blue). Three streamlines illustrate the complexity of blood flow patterns in and around the aneurysm. Reliable predictions can be obtained in just a few hours, using parallel calculation methods.

Julia Mikhal's work will enable the entire process to be automated, starting from the collection of a patient's medical data right through to the fluid-mechanical analysis of the flows and forces involved. This generates predictions that have a reliable margin of error, which greatly assists medical specialists in the process of decision making. The key factors in preventing the situation from worsening are speed, reliability, and a rational consideration of the alternatives.

Julia Mikhal conducted her research in Prof. Bernard Geurts' Multiscale Modelling and Simulation group. This group is attached to two University of Twente research institutes: the MIRA Institute for Biomedical Engineering and Technical Medicine, and the MESA+ Institute for Nanotechnology.

Explore further: The contraceptive pill and HRT may protect against cerebral aneurysm

More information: Both an abstract and the full text of the PhD thesis, which is entitled "Modelling and simulation of flow in cerebral aneurysms," are available in digital format.

Related Stories

The contraceptive pill and HRT may protect against cerebral aneurysm

May 5, 2011
Women who develop cerebral aneurysms are less likely to have taken the oral contraceptive pill or hormone replacement therapy, suggesting taking oestrogen could have a protective effect, reveals research published in the ...

New device offers revolutionary treatment for difficult-to-Treat brain aneurysms

June 8, 2011
Physicians at Rush University Medical Center are offering a new and effective treatment to patients suffering from complex brain aneurysms. The recently FDA-approved technology called the Pipeline Embolization Device (PED ...

SLU neurosurgeon pushes brain bypass to new heights

April 15, 2011
On the cover of a recent edition of the journal Neurosurgery, the highest circulation medical journal in the field, readers saw an artist's intricate depiction of the high-flow brain bypass technique developed by SLU professor ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.