Team finds a new way to inhibit blood clotting and inflammation

November 6, 2012

(Medical Xpress)—Scientists have identified a group of small molecules that interfere with the activity of a compound that initiates multiple steps in blood clotting, including those that lead to the obstruction of veins or arteries, a condition called thrombosis. Blocking the activity of this compound, polyphosphate, could treat thrombosis with fewer bleeding side effects than the drugs that are currently on the market.

Their findings appear in the journal Blood.

are formed at the site of an injured blood vessel to prevent . Sometimes, however, blood clots completely clog an artery or vein and the surrounding tissues are damaged. The U.S. reports that annually, 300,000 to 600,000 Americans are afflicted with or pulmonary embolism, a blocked lung artery that often results from thrombosis, and 60,000 to 100,000 people die each year as a result of these conditions.

There are two pathways that trigger blood clotting. The tissue factor pathway helps stop bleeding if a person is injured. If any of the proteins of this pathway are missing, a bleeding problem will develop. In contrast, the contact pathway is activated when blood comes into contact with some artificial substances. Although this pathway can cause pathological blood clots, humans who lack proteins in this pathway do not have bleeding problems. These two pathways eventually converge to form a common pathway.

In 2006, the researchers found that compounds called polyphosphates can, when released from cell fragments called platelets, activate the contact pathway, said University of Illinois biochemistry professor James H. Morrissey, who led that study and the new analysis.

Because the contact pathway is not essential for normal blood clotting after an injury, interrupting polyphosphate "wouldn't have the bleeding side effects that touching anything downstream of it in the clotting cascade (would) have," Morrissey said.

The researchers found a variety of positively charged molecules that can bind to the negatively charged polyphosphate molecule and inhibit its ability to induce . By adding these compounds to human blood and plasma isolated from the body, Morrissey and his colleagues were able to measure their effectiveness in inhibiting polyphosphate's pro-thrombotic and pro-inflammatory activities.

The researchers also tested these inhibitors in mice that were afflicted with venous and arterial or inflammation, and found that these inhibitors prevented or reduced these negative effects.

"What this shows is that you could put really potent inhibitors of in and interrupt the clotting system by decreasing thrombotic risk, but probably not increasing (a person's) bleeding risk," Morrissey said. "This is the proof of principle that it works."

Although the compounds identified would not, by themselves, be good drug candidates, Morrissey said, the new study offers clues for developing more suitable drugs to target polyphosphates.

"I think that the work going forward would be to identify compounds that would be better drug candidates," he said.

Explore further: Blood cell breakthrough could help treat heart disease

More information: The paper, "Inhibition of Polyphosphate as a Novel Strategy for Preventing Thrombosis and Inflammation," is available online.

Related Stories

Blood cell breakthrough could help treat heart disease

April 27, 2012
(Phys.org) -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's biggest killer ...

Bloodstream scavenger inhibits clotting without increased bleeding

July 23, 2012
A compound that mops up debris of damaged cells from the bloodstream may be the first in a new class of drugs designed to address one of medicine's most difficult challenges -- stopping the formation of blood clots without ...

Xarelto's approval expanded

November 5, 2012
(HealthDay)—Approval of the anti-clotting drug Xarelto (rivaroxaban) has been expanded by the U.S. Food and Drug Administration to include treating deep vein thrombosis (DVT) or pulmonary embolism.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.