Better understanding of the cause of Alzheimer's disease: New suggestion for a possible treatment

December 14, 2012

Alzheimer's disease is the most common form of dementia, affecting over 35 million people worldwide. It is generally assumed that the clumping of beta-amyloid (Aß) protein causes neuronal loss in patients. Medication focuses on reducing Aß42, one of the most common proteins and the most harmful. University of Twente PhD student Annelies Vandersteen is refining the current approach. She explains: "The results of my research provide a broader understanding of the processes that lead to Alzheimer's disease and in this way may help to bring about new medication".

The Aß protein occurs in the body in various lengths, ranging from 33 to 49 . The shorter varieties are regarded as 'safe', unlike the longer ones – Aß42 and longer – which are highly aggregating. Current tries to reduce the clumping of Aß42, and its harmful effects, by limiting the release of Aß42. Reducing Aß42 production at the same time results in a rise in Aß38 levels. Vandersteen comments: "One of the findings of my research is that small amounts of Aß38 can in fact increase or temper the clumping and of longer Aß proteins. The processes that result in Alzheimer's disease are determined by the whole spectrum of Aß proteins. So the picture is far less black and white than has been assumed so far, and less common forms of Aß are far less harmless than we thought."

Vandersteen examined the protein mixtures in a laboratory situation. She devised a series of experiments based on a computer-calculated hypothesis. The behaviour of the various Aß proteins and mixtures was studied in detail and described using various biophysical techniques. The influence of the various Aß proteins and mixtures on neurons was then studied in a cell culture.

Annelies Vandersteen's PhD research was carried out as part of a triple degree at the University of Twente, the Catholic University of Leuven and the Vrije Universiteit Brussel. The study falls within the work of the MESA+ and MIRA research institutes of the University of Twente, Faculty of Science and Technology, Nanobiophysics Group. The thesis 'Aggregation and toxicity of amyloid-beta peptide in relation to peptide sequence variation' is available on request.

Related Stories

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.