Cellular fuel gauge may hold the key to restricting cancer growth

December 27, 2012

Researchers at McGill University have discovered that a key regulator of energy metabolism in cancer cells known as the AMP-activated protein kinase (AMPK) may play a crucial role in restricting cancer cell growth. AMPK acts as a "fuel gauge" in cells; AMPK is turned on when it senses changes in energy levels, and helps to change metabolism when energy levels are low, such as during exercise or when fasting. The researchers found that AMPK also regulates cancer cell metabolism and can restrict cancer cell growth.

The discovery was made by Russell (Rusty) Jones, an assistant professor at McGill's Goodman Cancer Research Centre and the Department of Physiology, Faculty of Medicine. Jones along with his team is the first to show that AMPK can act as a in animals. The research will be published December 27 in the journal .

"Cancer is a disease in which cells lose their normal restraints on growth and start to divide uncontrollably. But, in order for cells to grow quickly they need enough energy to complete the task," Jones explained. "AMPK acts like the fuel gauge in your car – it lets the body know when energy levels are low, and stops cell growth until there is enough gas in the tank. We wanted to see if this fuel gauge could affect the development and progression of cancer. We found that mice lacking AMPK developed tumours faster, suggesting that AMPK is important for keeping tumour development in check, at least for some ." For this study, Jones' team focused specifically on a type of known as lymphoma. They discovered that the protein Myc, which is activated in more than half of all cancers, could promote lymphoma more rapidly when mice were deficient for AMPK.

One of the ways support their enhanced rate of growth is by changing their metabolism, or how they generate energy. Cancer cells are different from normal cells in our body because they preferentially use sugar to fuel their growth. Jones discovered that AMPK plays a specific role in restricting cancer cells' ability to use sugar to fuel their growth. "For cancer cells with low AMPK levels, their metabolism goes into overdrive," explained Prof. Jones. "They use sugar more efficiently, allowing them to grow faster. These results suggest that turning on AMPK in cancer cells may be one way that we can restrict cancer growth."

Jones' breakthrough builds on his previous discovery that the widely prescribed medication metformin, a common diabetes drug, can restrict tumour cell growth. The results bring promise that common therapeutics that turn on AMPK and alter cellular metabolism, such as metformin, may become novel tools for cancer therapy. Jones and his colleagues at McGill are currently exploring clinical applications based on this research.

Explore further: AMPK amplifies Huntington's disease

Related Stories

AMPK amplifies Huntington's disease

July 18, 2011
A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

Cell energy sensor mechanism discovered: Studies linked to better understanding of cancer drugs

February 21, 2012
Johns Hopkins and National Taiwan University researchers have discovered more details about how an energy sensing "thermostat" protein determines whether cells will store or use their energy reserves.

Key enzyme plays roles as both friend and foe to cancer

June 14, 2012
A molecule thought to limit cell proliferation also helps cancer cells survive during initial tumor formation and when the wayward cells spread to other organs in the body, researchers at the University of Illinois at Chicago ...

Recommended for you

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.