New computer model to speed development of drugs for heart failure

December 13, 2012, University of Virginia

(Medical Xpress)—Researchers at the University of Virginia have developed a new model of how the heart reacts to stresses such as high blood pressure, shedding light on a common cause of heart failure and facilitating the development of new drugs to treat and prevent it.

The new maps the signaling network that controls how grow in response to biochemical and . Understanding this is critically important, because the cells' attempts to adapt to stresses such as a heart attack often lead to additional .

"It's an initial compensation that's trying to protect the heart, but ultimately this cardiac growth becomes harmful and leads to heart failure," said Jeff Saucerman, an assistant professor of biomedical engineering in U.Va.'s School of Engineering and Applied Science.

Unlike previous research that focused on individual proteins and genes affecting heart growth, U.Va.'s model takes a broader approach. "Most studies have focused on the individual trees, but we're trying to see the bigger picture of the forest," Saucerman said. "New modeling approaches have enabled a big-time expansion of what we're able to do. Our model is bigger than previous models by a factor of 15."

U.Va.'s new model represents a major step forward in science's understanding of the ' , bringing together and building upon much of the work that has been done on the subject.

"Individual people are identifying individual puzzle pieces that they think are really critical," Saucerman said. "What the model allows us to do is connect all the pieces together. From that, we're starting to see a picture of how this communications network functions that you can't see from any individual piece."

The new model should make it faster to develop new therapies for caused by growth of the heart. Not only does the model illuminate the cardiac cells' decision-making process, it allows scientists to make more accurate predictions and test out potential drug targets at a scale that is not possible experimentally.

 "Because the signaling network is so large, developing new drug targets for reversing or preventing this growth of the heart is very complicated," said Karen Ryall, a U.Va. biomedical engineering graduate student and first author of a paper outlining the model. "There's all this crosstalk between pathways that can work around a given intervention. It's hoped that with this project, we can begin to understand the connections between pathways and how this network makes decisions about how to grow in response to different stresses."

The paper outlining the new model has been published online by the Journal of Biological Chemistry. The article, by Ryall, David O. Holland, Kyle A. Delaney, Matthew J. Kraeutler, Audrey J. Parker and Saucerman, will appear in a forthcoming print edition as well.

The research would not be possible without public funding from the National Science Foundation and National Institutes of Health, Saucerman said.

The U.Va. researchers are making the new model freely available. The computer code has been published along with the paper, and U.Va. has developed user-friendly software for scientists and students with no programming experience.

Explore further: Hormone reduces risk of heart failure from chemotherapy

Related Stories

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011
Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Depressed heart function from stress improved by a simple sugar

July 19, 2011
Enhancing the production of ATP (adenosine triphosphate), an energy carrying molecule in heart cells, may shorten the heart’s recovery time after a heart attack or heart surgery.

The birth of new cardiac cells

December 5, 2012
Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Computer model for testing heart-disease drugs developed

August 31, 2011
UC Davis researchers have developed an accurate computer model to test the effects of medications for arrhythmia, or abnormal heart rhythm, before they are used in patients.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.