New understanding of how we see colors

December 7, 2012 by Lin Edwards report

(Medical Xpress)—Scientists have until now not fully understood how animals see in color, since visual pigments in eyes contain exactly the same chromophore (light absorbing segment of the molecule) and yet can absorb different wavelengths of light.

The chromophore retinal (Vitamin A or retinaldehyde) is used by all animals but, depending on the photoreceptor proteins (opsins) associated with it, the same molecule can absorb a spectrum of colors from blues or even ultraviolet to reds. How a single molecule can do this has until now been uncertain.

Now researchers, led by Prof. Babak Borhan of Michigan State University at East Lansing, set out to try to understand the mechanism by which the opsins change the light of the chromophore retinal. They concentrated their efforts on a found in human retinal photoreceptor cells, , which consists of opsin and chromophore components.

One of the major theories about how retinal works is that because it is strongly positively charged at one end it could distribute this electrostatic charge across the chromophore molecule, and this would enable it to absorb the longer wavelengths at the red end of the spectrum. Another theory held that a change in shape of the chromophore-opsin complex could alter the absorption capabilities.

The problem with testing the theories, Borhan said, is that the have proved difficult to work with. So instead, Borhan and colleagues used human cellular retinol binding protein II, (hCRBPII), a gut protein that binds retinol, which is closely related to retinal but which tolerates mutations more readily.

The team first created a mutation of hCRPBII that could bind retinal. They then changed the distribution of the on the retinal molecule by replacing at the binding site retinal uses on hCRPBII in various ways, and in so doing created a range of pigment proteins.

The team then used spectrophotometry to compare the light entering and leaving the proteins to determine which wavelengths were being absorbed. Using this approach they were able to prove the charge distribution theory was correct and that no change in shape was necessary.

A by-product of the new research is the production of the 11 new artificial pigments, which could be used in tracking proteins or cell types being studied, as well as other possible applications such as in food dyes. One of the new pigments could absorb a red wavelength of 644 nanometers (nm), which is above the theoretical maximum wavelength retinal can absorb (560 nm) and is close to infrared (750 nm +).

The paper was published in the journal Science.

Explore further: Why animals don't have infrared vision

More information: www.sciencemag.org/content/338/6112/1340.abstract

Related Stories

Why animals don't have infrared vision

June 9, 2011
On rare occasion, the light-sensing photoreceptor cells in the eye misfire and signal to the brain as if they have captured photons, when in reality they haven't. For years this phenomenon remained a mystery. Reporting in ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.