Glial cells assist in the repair of injured nerves

January 28, 2013, Max Planck Society
This is an electron microscope image of a cross-section through a mouse nerve: following injury, the myelin sheath of numerous regenerated nerve fibers is too thin. Credit: MPI of Experimental Medicine

When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Unlike the brain and spinal cord, the peripheral nervous system has an astonishing capacity for regeneration following injury. Researchers at the Max Planck Institute of Experimental Medicine in Göttingen have discovered that, following nerve damage, peripheral produce the growth factor neuregulin1, which makes an important contribution to the regeneration of damaged nerves.

From their cell bodies to their terminals in muscle or skin, neuronal extensions or axons in the are surrounded along their entire length by glial cells. These cells, which are known as , envelop the axons with an insulating sheath called myelin, which enables the rapid transmission of . Following injury to a , the damaged axons degenerate. After a few weeks, however, they regenerate and are then recovered with myelin by the Schwann cells. For thus far unexplained reasons, however, the Schwann cells do not manage to regenerate the completely. Thus the function of damaged nerves often remains permanently impaired and certain muscles remain paralysed in affected patients.

In a current research study, the scientists have succeeded in showing that the growth factor neuregulin1 supports and the redevelopment of the myelin layer. This protein is usually produced by neurons and is localised on axons where it acts as an important signal for the maturation of Schwann cells and myelin formation. Because the axons rapidly degenerate after injury, the remaining Schwann cells lose their contact with the axons. They thus lack the neuregulin1 signal of the nervous fibres. "In the phase following nerve damage, in which the axons are missing, the Schwann cells must carry out many tasks without the help of axonal signals. If the Schwann cells cannot overcome this first major obstacle in the aftermath of nerve injury, the nerve cannot be adequately repaired," explains Ruth Stassart, one of the study authors.

To prevent this, the Schwann cells themselves take over the production of the actual neuronal signal molecule. After nerve damage, they synthesise the neuregulin1 protein until the axons have grown again. With the help of genetically modified mice, the researchers working on this study were able to show that the neuregulin1 produced in Schwann cells is necessary for the new maturation of the Schwann cells and the regeneration of the myelin sheath after injury. "In mice that lack the neuregulin1 gene in their Schwann cells, the already incomplete nerve regeneration process is extensively impaired," explains co-author Robert Fledrich.

The researchers would now like to examine in greater detail how the Schwann cells contribute to the complete repair of myelinated axons after nerve damage, so that this information can also be used for therapeutic purposes.

Explore further: To fix diabetic nerve damage, blood vessels and support cells may be the real targets of treatment

More information: Ruth M Stassart, Robert Fledrich, Viktorija Velanac, Bastian G Brinkmann, Markus H Schwab, Dies Meijer, Michael W Sereda & Klaus-Armin Nave, A role for Schwann cell–derived neuregulin-1 in remyelination, Nature Neuroscience, 2013 Jan; 16(1):48-54. doi: 10.1038/nn.3281

Related Stories

To fix diabetic nerve damage, blood vessels and support cells may be the real targets of treatment

June 23, 2011
Blood vessels and supporting cells appear to be pivotal partners in repairing nerves ravaged by diabetic neuropathy, and nurturing their partnership with nerve cells might make the difference between success and failure in ...

Recommended for you

Paraplegic rats walk again after therapy, now we know why

March 19, 2018
With the help of robot-assisted rehabilitation and electrochemical spinal cord stimulation, rats with clinically relevant spinal cord injuries regained control of their otherwise paralyzed limbs. But how do brain commands ...

New research into letter-spacing could help improve children's reading

March 19, 2018
Increased letter spacing helps individuals read faster, but not due to visual processing, according to new research from Binghamton University, State University of New York.

Decision-making is shaped by individual differences in the functional brain connectome

March 19, 2018
Each day brings with it a host of decisions to be made, and each person approaches those decisions differently. A new study by University of Illinois researchers found that these individual differences are associated with ...

Scientists locate nerve cells that enable fruit flies to escape danger

March 19, 2018
Columbia University researchers have identified the nerve cells that initiate a fly's escape response: that complex series of movements in which an animal senses, and quickly maneuvers away from, something harmful such as ...

Decoding the chemistry of fear

March 19, 2018
Ask a dozen people about their greatest fears, and you'll likely get a dozen different responses. That, along with the complexity of the human brain, makes fear—and its close cousin, anxiety—difficult to study. For this ...

Kids with severe brain injuries may develop ADHD: study

March 19, 2018
(HealthDay)—Young children who sustain a severe head injury may struggle with attention problems as they grow older, researchers say.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.