Personalized medicine eliminates need for drug in two children

January 31, 2013, University of Montreal

Using genome-wide analysis, investigators at the Sainte-Justine University Hospital Research Center and the University of Montreal have potentially eliminated a lifetime drug prescription that two children with a previously unknown type of adrenal insufficiency had been receiving for 14 years.

Over a lifespan, the adjustment in treatment represents an approximate saving of $10,000 in drug and test costs per patient. Moreover, the less regime can potentially reduce the of hypertension in the patients. "This is a real case of made possible today through the use of novel techniques in genomics," stated Dr. Mark Samuels, lead author of a paper published on the subject in January 2013 in the Journal of Clinical . Dr. Johnny Deladoëy was the senior author of the article.

Fourteen years ago both children were diagnosed with adrenal insufficiency, a condition that occurs when the adrenal glands do not secrete enough hormones to control sugar and mineral levels in the blood. After having sequenced the part of the genome that codes for genes in one patient, the investigators identified mutations in POMC, the gene behind the disorder. They then showed that the disorder in the second patient was also caused by a similar mutation in the gene POMC. Identifying the causal gene allowed them to conclude that the only thing missing in the patients was the production of cortisol, the hormone that regulates blood sugar. They thus advised the patients to continue cortisol treatment, but that fludrocortisone treatment was unlikely to be necessary. So far, fludrocortisone has been stopped in one patient without any , while the condition of the second patient is still being evaluated.

In addition to reducing the risks of hypertension induced by fludrocortisone and allowing the patients and their family to feel more confident about the origin of the disease, the investigators' discovery made it possible to reduce by as much as $10,000 the health costs for patients with this type of adrenal insufficiency. Over a 70-year lifespan, this is what the fludrocortisone treatment and the blood tests required in the patients treated with it adds up to.

The physicians did not modify the treatment earlier in the children's lives due to lack of a clear molecular diagnosis hence an imperfect understanding of the disease. Not only could withholding one of the replacement hormones have potentially led to a fatal outcome, but also analyzing the whole genome that led to the diagnosis would have been unthinkable just a few years ago. "Due to the astronomical costs associated previously with analyzing the whole genome, certain genes had to be targeted that were potentially responsible for the disorder and only these genes were analyzed in spite of the risk of not finding the right gene," explains Dr. Samuels, a researcher in human genetics. Today, lower genome analysis costs make an analysis of the whole genome affordable.

Description of the study

The two children in the study were hospitalized at the ages of 4 months or 4 years respectively, for hypoglycemia and associated convulsions. A diagnosis of adrenal insufficiency was made and the two children were saved by administering replacement hormones. Their ACTH (the pituitary hormone that controls the adrenal gland) blood concentrations were very high, which seemed to implicate the adrenal gland. The produces two vital hormones: cortisol to regulate glycemia and aldosterone to control minerals. When in doubt, in the event of adrenal insufficiency, both hormone types (cortisol and fludrocortisone, an aldosterone analogue) are prescribed. Nevertheless, fludrocortisone treatment can lead to side effects such as hypertension.

Hoping to better target patient treatment, the investigators went about tracking down the exact cause of adrenal insufficiency. They proceeded to analyze part of the genome that codes for genes in one patient's DNA (whole-genome sequencing being still too expensive for the time being). To their great surprise, the analysis indicated the presence of two mutations in POMC, the gene that codes for ACTH, in the patient. Direct sequencing of the POMC gene in DNA from the second patient confirmed the occurrence of one of the mutations in that child as well. The researchers then collaborated with Dr. Michel Bouvier (University of Montreal) and Dr. Nicole Gallo-Payet (University of Sherbrooke) to validate the discovery by performing in vitro tests on cells using two synthetic ACTHs produced for the experiment: one normal and the other carrying the mutation observed in both children. These studies showed that, while high levels were detected in the blood, the mutant ACTH was inactive. Due to technical limitations, the standard diagnostic test that detects ACTH was unable to distinguish between the normal and the mutated form found in the patients.

"The genome analysis allowed us to incriminate the POMC gene. Since the gene was not suspect according to the blood tests, we would have missed the cause of the disease without this new technique," concludes Dr. Deladoëy, a physician and researcher in endocrinology and diabetology.

This case of personalized medicine made possible through novel genomic techniques is just the tip of the iceberg. In the near future, investigators hope to succeed in refining the treatment of many patients using these techniques.

Explore further: Newborn screening may miss adrenal-gland disorder

Related Stories

Newborn screening may miss adrenal-gland disorder

June 12, 2012
(HealthDay) -- Routine newborn screening failed to identify about one-fifth of infants with an adrenal gland disorder called congenital adrenal hyperplasia, a new study has found.

Common genetic mutation increases sodium retention, blood pressure

May 30, 2012
Nearly 40 percent of the small adrenal tumors that cause big problems with high blood pressure share a genetic mutation that causes patients to retain too much sodium, researchers report.

Signifor approved for Cushing's disease

December 17, 2012
(HealthDay)—Signifor (pasireotide diaspartate) has been approved by the U.S. Food and Drug Administration to treat Cushing's disease in cases that cannot be treated by surgery.

Scientists discover gene which causes rare disease in babies

May 29, 2012
A rare disease which often first presents in newborn babies has been traced to a novel genetic defect, scientists at Queen Mary, University of London have found.

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.