Novel test streamlines testing for Huntington Disease

February 13, 2013, Elsevier

A new test may help to streamline genetic testing for Huntington Disease (HD) by generating accurate results, avoiding unnecessary additional testing, and improving turnaround time. The test, which uses chimeric or triplet repeat primed PCR (TP PCR) methodology, yielded results that were 100% concordant with standard genotyping methods in an analysis of 246 samples. The high sensitivity and specificity of the test could reduce the number of false negative results and facilitate both diagnosis and prognosis by correctly sizing the genetic abnormality characteristic of HD.

(also known as Huntington's disease or Huntington's chorea) is an inherited and progressive that typically becomes apparent during a person's thirties or forties. With time, HD patients develop diminished muscle coordination that is evident in walking, speaking, and swallowing and undergo changes in personality and thinking ability. A mutation in the leads to an abnormal number of repeats of a sequence of three nucleotides known as CAG. Based on the number of CAG repeats, a person may be deemed to be normal (10-35 repeats), at low risk (36-39 repeats), or at high risk (greater than 40 repeats) of having or developing HD symptoms. That is why accurately determining the number of CAG repeats is so important.

In this study, 246 samples that had been previously analyzed by other methods were tested with the new method (TP PCR). The samples included 14 DNA reference samples from the Coriell Cell Repositories, three samples from the College of American Pathologists 2002 Survey, and 229 samples from individuals tested at ARUP Laboratories for clinical purposes by standard technologies, explained lead investigator Elaine Lyon, PhD, Medical Director of , ARUP Laboratories and its Institute for Clinical and , and Department of Pathology, University of Utah, , UT. Normal samples were included as well as those with a wide range of CAG repeats. The samples were blinded and analyzed.

The results showed that TP PCR correctly sized 240 of the 246 samples. All of the 100 samples in the normal and low risk groups were correctly sized. In the 146 samples of those known to be affected by HD (those with > 39 CAG repeats), the results for 140 correctly matched that found with other methods whereas the number of CAG repeats differed by ±1 in 6 samples, a difference said by the authors to be within the precision of the method at higher repeat numbers. Up to 101 CAG repeats could be accurately sized with this test. Even samples that were found to be challenging to analyze with other methods could be assessed solely and accurately by TP PCR.

Another advantage of this new method is its ability to identify true homozygous normal samples, thus avoiding further testing. With other methodologies, if a sample appears homozygous for the normal allele, additional testing, often with Southern blot analysis, is still recommended because of the risk of false negatives. "Southern blotting is expensive, labor intensive, requires high concentrations of DNA, and can delay turnaround time," says Dr. Lyon. However, when HD is suspected in children, Dr. Lyon and colleagues recommend that even with TP PCR, apparently homozygous samples should undergo further testing.

TP PCR uses a forward and reverse chimeric primer to amplify from multiple priming sites within the trinucleotide repeat. TP PCR produces a characteristic ladder on a fluorescence electropherogram that allows the rapid and inexpensive identification and quantification of expanded repeats. Major peaks and minor peaks (stutters) representing CAG repeats can be analyzed and sized automatically using commercially available software.

Explore further: New SRM helps improve diagnosis of Huntington's Disease

More information: The Journal of Molecular Diagnostics, Volume 15, Issue 2 (March 2013) doi: 10.1016/j.jmoldx.2012.09.005

Related Stories

New SRM helps improve diagnosis of Huntington's Disease

April 13, 2011
A new Standard Reference Material (SRM) from the National Institute of Standards and Technology will help clinical genetics labs accurately diagnose Huntington's disease, an inherited degenerative brain disorder that usually ...

Scientists find another clue to the origins of degenerative diseases

April 11, 2011
For years, researchers in genome stability have observed that several neurodegenerative diseases—including Huntington's disease—are associated with cell-killing proteins that are created during expansion of a CAG/CTG ...

Enzyme inhibition protects against Huntington's disease damage in two animal models

November 29, 2012
Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal ...

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.