Two minds can be better than one: Thought-controlled virtual spacecraft

February 5, 2013, University of Essex

Scientists at the University of Essex have been working with NASA on a project where they controlled a virtual spacecraft by thought alone.

Using BCI (brain-computer interface) technology, they found that combining the of two people could be more accurate in steering a spacecraft than one person. BCIs convert signals generated from the brain into control commands for various applications, including virtual reality and hands-free control.

Researchers at Essex have already been undertaking extensive projects into using BCI to help people with disabilities to enable spelling, mouse control or to control a wheelchair. The research involves the user carrying our certain which the computer then translates into commands to move the wheelchair in different directions.

The University has built-up an for its BCI research and is expanding its work into the new area of collaborative BCI, where tasks are performed by combining the signals of multiple BCI users.

The £500,000 project with 's Jet Propulsion Lab in Pasadena, California, involved two people together steering a virtual spacecraft to a planet using a unique BCI mouse, developed by scientists at Essex.

Using (EEG), the two users wore a cap with electrodes which picked up different patterns in the depending on what they were focusing their attention on a screen – in this case one of the eight directional dots of the cursor. representing the users' chosen direction, as interpreted by the computer, were then merged in real time to produce control commands for steering the spacecraft.

As Professor Riccardo Poli, for the University's School of Computer Science and , explained, the experiment was very intense and involved a lot of concentration. With two people taking part in the test, the results were more accurate as the system could cope if one of the users had a brief lapse in concentration.

Analysis of this collaborative approach showed that two minds could be better than one at producing accurate trajectories. Combining signals also helped reduce the random "noise" that hinders EEG signals, such as heartbeat, breathing, swallowing and muscle activity.  "When you average signals from two people's brains, the noise cancels out a bit," added Professor Poli.

Professor Poli said an exciting development for BCI research in the future relates to joint decision making, where a physiological signal, like pressing a button, and brain activity can be combined to give a superior result. "It is like measuring someone's gut feeling," added Professor Poli.

Explore further: Team reports brain-controlled ambulation in robotic leg test

Related Stories

Team reports brain-controlled ambulation in robotic leg test

September 4, 2012
(Phys.org)—Spinal cord injury victims may be able to look forward to life beyond a wheelchair via a robotic leg prosthesis controlled by brain waves. Individuals with paraplegia due to spinal cord injury who are wheelchair-bound ...

Recommended for you

Researchers find important new piece in the Huntington's disease puzzle

June 21, 2018
In a new study, researchers from the University of Copenhagen have discovered a hitherto unknown error in the transport of glutamine between astrocytes and neurons in the brain of mice with Huntington's disease. At the same ...

Rare in-vivo study shows weak brain nodes have strong influence on memory network

June 20, 2018
Our ability to learn, remember, problem solve, and speak are all cognitive functions related to different parts of our brain. If researchers can identify how those brain parts communicate and exchange information with each ...

Powerful new approach helps understand molecular alterations in neurological disease

June 20, 2018
Neurological diseases are typically associated with a multitude of molecular changes. But out of these thousands of changes in gene expression, which ones are actually driving the disease? To answer this question, a team ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

A dual-therapy approach to boost motor recovery after a stroke

June 20, 2018
Paralysis of an arm and/or leg is one of the most common effects of a stroke. But thanks to research carried out by scientists at the Defitech Foundation Chair in Brain-Machine Interface and collaborators, stroke victims ...

New technique fine-tunes treatment for severe epilepsy cases

June 20, 2018
One of three epilepsy patients experience no relief from drugs and are candidates for surgery. An advance by researchers at Yale and the Cleveland Clinic will enable surgeons to more precisely target areas of the brain causing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.