Two minds can be better than one: Thought-controlled virtual spacecraft

February 5, 2013, University of Essex

Scientists at the University of Essex have been working with NASA on a project where they controlled a virtual spacecraft by thought alone.

Using BCI (brain-computer interface) technology, they found that combining the of two people could be more accurate in steering a spacecraft than one person. BCIs convert signals generated from the brain into control commands for various applications, including virtual reality and hands-free control.

Researchers at Essex have already been undertaking extensive projects into using BCI to help people with disabilities to enable spelling, mouse control or to control a wheelchair. The research involves the user carrying our certain which the computer then translates into commands to move the wheelchair in different directions.

The University has built-up an for its BCI research and is expanding its work into the new area of collaborative BCI, where tasks are performed by combining the signals of multiple BCI users.

The £500,000 project with 's Jet Propulsion Lab in Pasadena, California, involved two people together steering a virtual spacecraft to a planet using a unique BCI mouse, developed by scientists at Essex.

Using (EEG), the two users wore a cap with electrodes which picked up different patterns in the depending on what they were focusing their attention on a screen – in this case one of the eight directional dots of the cursor. representing the users' chosen direction, as interpreted by the computer, were then merged in real time to produce control commands for steering the spacecraft.

As Professor Riccardo Poli, for the University's School of Computer Science and , explained, the experiment was very intense and involved a lot of concentration. With two people taking part in the test, the results were more accurate as the system could cope if one of the users had a brief lapse in concentration.

Analysis of this collaborative approach showed that two minds could be better than one at producing accurate trajectories. Combining signals also helped reduce the random "noise" that hinders EEG signals, such as heartbeat, breathing, swallowing and muscle activity.  "When you average signals from two people's brains, the noise cancels out a bit," added Professor Poli.

Professor Poli said an exciting development for BCI research in the future relates to joint decision making, where a physiological signal, like pressing a button, and brain activity can be combined to give a superior result. "It is like measuring someone's gut feeling," added Professor Poli.

Explore further: Team reports brain-controlled ambulation in robotic leg test

Related Stories

Team reports brain-controlled ambulation in robotic leg test

September 4, 2012
(Phys.org)—Spinal cord injury victims may be able to look forward to life beyond a wheelchair via a robotic leg prosthesis controlled by brain waves. Individuals with paraplegia due to spinal cord injury who are wheelchair-bound ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.