Study could explain why some people get zits and others don't

February 28, 2013, University of California, Los Angeles

The bacteria that cause acne live on everyone's skin, yet one in five people is lucky enough to develop only an occasional pimple over a lifetime. What's their secret?

In a boon for teenagers everywhere, a UCLA study conducted with researchers at Washington University in St. Louis and the Los Angeles Biomedical Research Institute has discovered that acne bacteria contain "bad" strains associated with pimples and "good" strains that may protect the skin.

The findings, published in the Feb. 28 edition of the , could lead to a myriad of new therapies to prevent and treat the disfiguring skin disorder.

"We learned that not all acne bacteria trigger pimples—one strain may help keep skin healthy," said principal investigator Huiying Li, an assistant professor of molecular and at the David Geffen School of Medicine at UCLA. "We hope to apply our findings to develop new strategies that stop blemishes before they start, and enable dermatologists to customize treatment to each patient's unique cocktail of ."

The scientists looked at a tiny microbe with a big name: Propionibacterium acnes, bacteria that thrive in the oily depths of our pores. When the bacteria aggravate the immune system, they cause the swollen, red bumps associated with acne.

Using over-the-counter pore-cleansing strips, LA BioMed and UCLA researchers lifted P. acnes bacteria from the noses of 49 pimply and 52 clear-skinned volunteers. After extracting the from the strips, Li's laboratory tracked a to identify the in each volunteer's pores and recorded whether the person suffered from acne.

Next, Li's lab cultured the bacteria from the strips to isolate more than 1,000 strains. Washington University scientists sequenced the genomes of 66 of the P. acnes strains, enabling UCLA co-first author Shuta Tomida to zero in on genes unique to each strain.

"We were interested to learn that the bacterial strains looked very different when taken from diseased skin, compared to healthy skin," said co-author Dr. Noah Craft, a dermatologist and director of the Center for Immunotherapeutics Research at LA BioMed at Harbor–UCLA Medical Center. "Two unique strains of P. acnes appeared in one out of five volunteers with acne but rarely occurred in clear-skinned people."

The biggest discovery was still to come.

"We were extremely excited to uncover a third strain of P. acnes that's common in healthy skin yet rarely found when acne is present," said Li, who is also a member of UCLA's Crump Institute for Molecular Imaging. "We suspect that this strain contains a natural defense mechanism that enables it to recognize attackers and destroy them before they infect the bacterial cell."

Offering new hope to acne sufferers, the researchers believe that increasing the body's friendly strain of P. acnes through the use of a simple cream or lotion may help calm spotty complexions.

"This P. acnes strain may protect the skin, much like yogurt's live bacteria help defend the gut from harmful bugs," Li said. "Our next step will be to investigate whether a probiotic cream can block bad bacteria from invading the skin and prevent pimples before they start."

Additional studies will focus on exploring new drugs that kill bad strains of P. acnes while preserving the good ones; the use of viruses to kill acne-related bacteria; and a simple test to predict whether a person will develop aggressive acne in the future.

"Our research underscores the importance of strain-level analysis of the world of human microbes to define the role of in health and disease," said George Weinstock, associate director of the Genome Institute and professor of genetics at Washington University in St. Louis. "This type of analysis has a much higher resolution than prior studies that relied on bacterial cultures or only made distinctions between bacterial species."

Acne affects 80 percent of Americans at some point in their lives, yet scientists know little about what causes the disorder and have made limited progress in developing new strategies for treating it. Dermatologists' arsenal of anti-acne tools—benzoyl peroxide, antibiotics and Accutane (isotretinoin)—hasn't expanded in decades. Most severe cases of acne don't respond to antibiotics, and Accutane can produce serious side effects.

Explore further: Could viruses be used to treat acne?

Related Stories

Could viruses be used to treat acne?

September 25, 2012
Watch out, acne. Doctors soon may have a new weapon against zits: a harmless virus living on our skin that naturally seeks out and kills the bacteria that cause pimples.

Researchers working on vaccine for acne

September 26, 2011
(Medical Xpress) -- With 85 percent of teenagers and some 40 million Americans suffering with acne, researchers from the University of California and the vaccine company Sanofi-Pasteur announced they are coming together to ...

Acne easier to treat than some adolescents might think

September 24, 2012
(Medical Xpress)—For teenagers struggling with acne, Sophia Yen, MD, has a simple message: Your doctor can help.

Thyme may be better for acne than prescription creams

March 28, 2012
Herbal preparations of thyme could be more effective at treating skin acne than prescription creams, according to research presented at the Society for General Microbiology's Spring Conference in Dublin this week. Further ...

Recommended for you

Metabolite therapy proves effective in treating C. difficile in mice

March 20, 2018
A team of UCLA researchers found that a metabolite therapy was effective in mice for treating a serious infection of the colon known as Clostridium difficile infection, or C. difficile.

Sick air travelers mostly likely to infect next row: study

March 19, 2018
People who fly on airplanes while contagious can indeed get other people sick, but the risk is mainly to those seated next to them or in the adjacent row, US researchers said Monday.

Study of COPD patients has created a 'looking glass' into genome of pathogen

March 19, 2018
Decades of work on chronic obstructive pulmonary disease (COPD) at the University at Buffalo and the Veterans Affairs Western New York Healthcare System have yielded extraordinary information about the pathogen that does ...

Newly described human antibody prevents malaria in mice

March 19, 2018
Scientists have discovered a human antibody that protected mice from infection with the deadliest malaria parasite, Plasmodium falciparum. The research findings provide the basis for future testing in humans to determine ...

A multimodal intervention to reduce one of the most common healthcare-acquired infections

March 16, 2018
Surgical site infections are the most frequent health care-associated infections in developing countries. According to the World Health Organization (WHO), this type of infection can affect up to one-third of surgical patients ...

After infection, herpes lurks in nerve cells, ready to strike—New research reveals what enables the virus to do so

March 15, 2018
Once herpes simplex infects a person, the virus goes into hiding inside nerve cells, hibernating there for life, periodically waking up from its sleep to reignite infection, causing cold sores or genital lesions to recur.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.