Team unveils novel wireless brain sensor

February 28, 2013, Brown University
Engineers Arto Nurmikko and Ming Yin, Brown University, examine their prototype wireless, broadband, implantable neural sensing device. Credit: Fred Field for Brown University

A team of neuroengineers based at Brown University has developed a fully implantable and rechargeable wireless brain sensor capable of relaying real-time broadband signals from up to 100 neurons in freely moving subjects. Several copies of the novel low-power device, described in the Journal of Neural Engineering, have been performing well in animal models for more than year, a first in the brain-computer interface field. Brain-computer interfaces coud help people with severe paralysis control devces with their thoughts.

Arto Nurmikko, professor of engineering at Brown University who oversaw the 's invention, is presenting it this week at the 2013 International Workshop on Clinical Brain-Machine Interface Systems in Houston.

"This has features that are somewhat akin to a cell phone, except the conversation that is being sent out is the brain talking wirelessly," Nurmikko said.

Neuroscientists can use such a device to observe, record, and analyze the signals emitted by scores of neurons in particular parts of the animal model's brain.

Meanwhile, wired systems using similar implantable sensing are being investigated in research to assess the feasibility of people with severe paralysis moving assistive devices like robotic arms or computer cursors by thinking about moving their arms and hands.

This wireless system addresses a major need for the next step in providing a practical brain-computer interface," said neuroscientist John Donoghue, the Wriston Professor of Neuroscience at Brown University and director of the Brown Institute for Brain Science.

Tightly packed technology

In the device, a pill-sized chip of electrodes implanted on the cortex sends signals through uniquely designed into the device's laser-welded, hermetically sealed titanium "can." The can measures 2.2 inches (56 mm) long, 1.65 inches (42 mm) wide, and 0.35 inches (9 mm) thick. That small volume houses an entire signal processing system: a lithium ion battery, ultralow-power integrated circuits designed at Brown for signal processing and conversion, wireless radio and infrared transmitters, and a copper coil for recharging—a "brain radio." All the wireless and charging signals pass through an electromagnetically transparent sapphire window.

In all, the device looks like a miniature sardine can with a porthole.

But what the team has packed inside makes it a major advance among brain-machine interfaces, said lead author David Borton, a former Brown graduate student and postdoctoral research associate who is now at Ecole Polytechnique Federale Lausanne in Switzerland.

"What makes the achievement discussed in this paper unique is how it integrated many individual innovations into a complete system with potential for neuroscientific gain greater than the sum of its parts," Borton said. "Most importantly, we show the first fully implanted microsystem operated wirelessly for more than 12 months in large animal models—a milestone for potential [human] clinical translation."

The device transmits data at 24 Mbps via 3.2 and 3.8 Ghz microwave frequencies to an external receiver. After a two-hour charge, delivered wirelessly through the scalp via induction, it can operate for more than six hours.

"The device uses less than 100 milliwatts of power, a key figure of merit," Nurmikko said.

Co-author Ming Yin, a Brown postdoctoral scholar and electrical engineer, said one of the major challenges that the team overcame in building the device was optimizing its performance given the requirements that the implant device be small, low-power and leak-proof, potentially for decades.

"We tried to make the best tradeoff between the critical specifications of the device, such as power consumption, noise performance, wireless bandwidth and operational range," Yin said. "Another major challenge we encountered was to integrate and assemble all the electronics of the device into a miniaturized package that provides long-term hermeticity (water-proofing) and biocompatibility as well as transparency to the wireless data, power, and on-off switch signals."

With early contributions by electrical engineer William Patterson at Brown, Yin helped to design the custom chips for converting neural signals into digital data. The conversion has to be done within the device, because brain signals are not produced in the ones and zeros of computer data.

Ample applications

The team worked closely with neurosurgeons to implant the device in three pigs and three rhesus macaque monkeys. The research in these six animals has been helping scientists better observe complex neural signals for as long as 16 months so far. In the new paper, the team shows some of the rich neural signals they have been able to record in the lab. Ultimately this could translate to significant advances that can also inform human neuroscience.

Current wired systems constrain the actions of research subjects, Nurmikko said. The value of wireless transmission is that it frees subjects to move however they intend, allowing them to produce a wider variety of more realistic behaviors. If want to observe the brain signals produced during some running or foraging behaviors, for instance, they can't use a cabled sensor to study how neural circuits would form those plans for action and execution or strategize in decision making.

In the experiments in the new paper, the device is connected to one array of 100 cortical electrodes, the microscale individual neural listening posts, but the new device design allows for multiple arrays to be connected, Nurmikko said. That would allow scientists to observe ensembles of neurons in multiple related areas of a brain network.

The new wireless device is not approved for use in humans and is not used in clinical trials of brain-. It was designed, however, with that translational motivation.

"This was conceived very much in concert with the larger BrainGate team, including neurosurgeons and neurologists giving us advice as to what were appropriate strategies for eventual clinical applications," said Nurmikko, who is also affiliated with the Brown Institute for .

Borton is now spearheading the development of a collaboration between EPFL and Brown to use a version of the device to study the role of the motor cortex in an of Parkinson's disease.

Meanwhile the Brown team is continuing work on advancing the device for even larger amounts of neural data transmission, reducing its size even further, and improving other aspects of the device's safety and reliability so that it can someday be considered for clinical application in people with movement disabilities.

Explore further: Noninvasive brain implant could someday translate thoughts into movement

More information: iopscience.iop.org/1741-2552/10/2/026010

Related Stories

Noninvasive brain implant could someday translate thoughts into movement

June 16, 2011
(PhysOrg.com) -- A brain implant developed at the University of Michigan uses the body's skin like a conductor to wirelessly transmit the brain's neural signals to control a computer, and may eventually be used to reactivate ...

Stanford joins BrainGate team developing brain-computer interface to aid people with paralysis

November 14, 2011
(Medical Xpress) -- Stanford University researchers are enrolling participants in a pioneering study investigating the feasibility of people with paralysis using a technology that interfaces directly with the brain to control ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.