Study reveals Rx target for HPV, Hep C and related cancers

April 10, 2013

New discoveries by a team of scientists at LSU Health Sciences Center New Orleans for the first time reveal the inner workings of a master regulator that controls functions as diverse as the ability of nerve cells to "rewire" themselves in response to external stimuli and the mechanism by which certain viruses hijack normal cellular processes to facilitate their replication that can ultimately lead to cancer. The research will be published in the April 12, 2013 issue of the Journal of Biological Chemistry.

The complex genetic programs controlling the function of cells and the organs, nerves, and tissues that they form are expressed through the concerted contributions of some 30,000 unique proteins that constitute the human genome. Coordination of these proteins is controlled by a small set of master regulators that sense the environment of the cell and alter subtle features of the genetic programs to maintain metabolic balance, called cellular homeostasis. More radical alterations in the genetic programs due to or in response to viral or bacterial infection frequently lead to conditions that can result in cancer or developmental defects.

Lead investigator Dr. Virginia Ronchi, a postdoctoral fellow, and research associate Jennifer Klein, working in the laboratory of Dr. Arthur Haas, Professor and Head of Biochemistry and Molecular Biology at the LSU Health Sciences Center New Orleans School of Medicine, focused on the E6AP enzyme. This enzyme regulates the functions of several dozen different proteins involved in key homoeostatic processes. The E6AP protein belongs to a class of enzymes known as ubiquitin ligases. E6AP controls its functions by attaching a smaller protein called ubiquitin to them that serves as a molecular flag to signal removal of the target by a large cellular nanomachine called the 26S proteasome.

Inherited mutations in the E6AP gene that block its activity result in Angelman's syndrome, a developmental condition characterized by severe mental retardation in children because the brain is unable to "learn" by adapting its nerve connections to outside stimuli. Other mutations that cause a duplication of the E6AP gene and increased activity are thought to cause some forms of inherited Autism Spectrum Disorder. In other tissues, the genetic program of the Human Papillomavirus produces an E6 viral protein following infection that hijacks the E6AP enzyme to target a different set of cells, not only ensuring the ability of the virus to replicate but causing uncontrolled growth resulting in benign skin tags, warts, or cervical cancer, depending on the site of infection. The Hepatitis C virus exploits a similar strategy to ensure its replication in the liver by expressing a different protein that redirects the function of E6AP, resulting in cirrhosis and liver cancer in the chronically infected.

The LSUHSC investigators used the ability of E6AP to form chains of ubiquitin as a window into the molecular function of the enzyme. The studies provide a description of the mechanism for the enzyme at the molecular level which provides potential strategies for designing drugs to block E6AP function in the case of the Human Papillomavirus and Hepatitis C virus. Because E6AP is similar to a larger family of related master regulators that control other cell functions, knowledge about it may also apply to future drug design for enzymes involved in many other diseases.

"The current work by Ronchi and Klein marks a major advance in our understanding of this important class of cell regulators and redefines more than 15 years of work in the field by other investigators," notes Dr. Haas.

Explore further: New research finds trigger for breast cancer spread

Related Stories

New research finds trigger for breast cancer spread

January 3, 2012
Research led by Shyamal Desai, PhD, Assistant Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans, has discovered a key change in the body's defense system that increases the potential ...

Researchers discover how hepatitis C virus reprograms human liver cells

December 18, 2012
Hepatitis C virus has evolved to invade and hijack the basic machinery of the human liver cell to ensure its survival and spread. Researchers at the University of North have discovered how hepatitis C binds with and repurposes ...

Team discovers new gene that affects clearance of hepatitis C virus

January 8, 2013
(Medical Xpress)—Scientists have discovered a gene that interferes with the clearance of hepatitis C virus infection. They also identified an inherited variant within this gene, Interferon Lambda 4 (IFNL4), that predicts ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.