Malaria's severity reset by mosquito

May 30, 2013, Wellcome Trust Sanger Institute
Mosquito transmission of P.c. chabaudi modifies parasite gene expression in the blood stage of the cycle.

(Medical Xpress)—For the first time, researchers have proven that the way in which malaria is transmitted to the host affects how severe the resulting infection will be.

The route of infection modifies the 's gene activity levels and regulates the parasite's spread in the blood by controlling the mouse's . This study begins to understand how to malaria occurs, an important step for the development of effective vaccines.

Researchers have known that the severity of symptoms of malaria increases when the malaria parasite is transferred repeatedly through in mice rather than by a mosquito, but up until now they have not known why.

"Understanding how malaria becomes more or less virulent is central to understanding how to manage and treat the disease," says Dr Matt Berriman, a senior author from the Wellcome Trust Sanger Institute. "We studied a rodent malaria species, that exhibits many of the same responses as seen in a human . Our understanding of how the parasite interacts with the immune system is fundamentally changed by this study."

To explore the effect that the route of transmission had, the team examined the levels of in the malaria parasite during its life cycle in mice.

They found that P.c. chabaudi 'resets' its when it is transmitted between the mosquito and mouse, making it less virulent. However, transferring the parasite through multiple blood transfers between mice in the laboratory loses this resetting. Because there is no reset the malaria parasite multiples much more quickly in mice after blood transfers, and causes an increase in .

The team uncovered a direct association between a specific gene family in the malaria parasite, known as cir genes, and the control of severity of the disease symptoms in mice. It appears that malaria parasite genes control the immune response of mice to the disease.

"Our research is helping to better understand vaccine targets," says Dr Adam Reid, author from the Wellcome Trust Sanger Institute. "RNA sequencing allowed us to identify a set of Plasmodium genes that control the immune response and the degree of severity of the disease in mice. We anticipate that we will be able to transfer the findings from our study in mice to human malaria studies, the next phase of our research."

The team expect that the cir gene family plays a role in activating the immune system and controls the level of parasite in the blood to keep malaria from harming the host. This is the largest in malaria parasites, including the deadly human parasite, P. falciparum.

The study was led by Dr Jean Langhorne based at the Medical Research Council National Institute for Medical Research: "These results place the mosquito at the centre of our efforts to pick apart the processes behind protective immunity to malaria. Malaria is both preventable and curable but still has a huge burden on those who are vulnerable to severe forms of the infection, mostly young children. Understanding protective immunity in the body would be an important first step towards developing an effective vaccine."

Explore further: No idle chatter: Study finds malaria parasites 'talk' to each other

More information: Spence, P. et al. Vector transmission regulates immune control of Plasmodium virulence, Nature 2013. DOI: 10.1038/nature12231

Related Stories

No idle chatter: Study finds malaria parasites 'talk' to each other

May 15, 2013
Melbourne scientists have made the surprise discovery that malaria parasites can 'talk' to each other – a social behaviour to ensure the parasite's survival and improve its chances of being transmitted to other humans.

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Malaria parasite protein identified as potential new target for drug treatment

April 25, 2013
Scientists have discovered how a protein within the malaria parasite is essential to its survival as it develops inside a mosquito. They believe their findings identify this protein as a potential new target for drug treatments ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.