New neuron formation could increase capacity for new learning, at the expense of old memories

May 24, 2013

New research presented today shows that formation of new neurons in the hippocampus - a brain region known for its importance in learning and remembering - could cause forgetting of old memories by causing a reorganization of existing brain circuits. Drs. Paul Frankland and Sheena Josselyn, both from the Hospital for Sick Children in Toronto, argue this reorganization could have the positive effect of clearing old memories, reducing interference and thereby increasing capacity for new learning. These results were presented at the 2013 Canadian Neuroscience Meeting, the annual meeting of the Canadian Association for Neuroscience - Association Canadienne des Neurosciences (CAN-ACN).

Researchers have long known of the phenomenon of infantile amnesia: This refers to the absence of long-term memory of events occurring within the first 2-3 years of life, and little long-term memories for events occurring until about 7 years of age. Studies have shown that though young children can remember events in the short term, these memories do not persist. This new study by Frankland and Josselyn shows that this amnesia is associated with high levels of new neuron production - a process called neurogenesis - in the hippocampus, and that more permanent is associated with a reduction in neurogenesis.

Dr. Frankland and Dr. Josselyn's approach was to look at retention of memories in young mice in which they suppressed the usual high levels of neurogenesis in the hippocampus (thereby replicating the circuit stability normally observed in ), but also in older mice in which they stimulated increased neurogenesis (thereby replicating the conditions normally seen in younger mice). Dr. Frankland was able to show a between a reduction in neurogenesis and increased remembering, and the converse, decreased remembering when neurogenesis increased.

Dr. Frankland concludes: " Why infantile amnesia exists has long been a mystery. We think our new studies begin to explain why we have no memories from our earliest years."

Explore further: Serotonin mediates exercise-induced generation of new neurons

Related Stories

Serotonin mediates exercise-induced generation of new neurons

May 13, 2013
Mice that exercise in running wheels exhibit increased neurogenesis in the brain. Crucial to this process is serotonin signaling. These are the findings of a study by researchers at the Max Delbrück Center Berlin-Buch. Surprisingly, ...

Medical center identifies role of neuron creation in anxiety disorders

January 24, 2013
(Medical Xpress)—People with anxiety disorders such as post-traumatic stress disorder (PTSD) often have impaired pattern separation—the process by which similar experiences are transformed into distinct memories. They ...

Infantile amnesia: Gauging children's earliest memories

May 11, 2011
The inability of individuals to remember the very earliest years of their lives, called infantile amnesia, has been studied for many years in adults, who seem to recall very little before ages 3 or 4. But children also experience ...

Researchers visualize memory formation for the first time in zebrafish

May 16, 2013
In our interaction with our environment we constantly refer to past experiences stored as memories to guide behavioral decisions. But how memories are formed, stored and then retrieved to assist decision-making remains a ...

Lithium restores cognitive function in Down syndrome mice

December 3, 2012
Down syndrome is a neurodevelopmental disorder that is the leading cause of genetically defined intellectual disability. In the brain, Down syndrome results in alterations in the connections between neurons and a reduction ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.