Researchers devise method for growing 3-D heart tissue

July 17, 2013 by Bob Yirka report

(Medical Xpress)—Researchers at MIT and Charles Stark Draper Laboratory have developed a method of growing living 3-D tissue using a modified version of a machine normally used to build integrated circuits. In their paper published in the journal Advanced Materials, the group describes how they built customized scaffolding that allowed for the growth of functional three dimensional heart tissue—a technique that could one day lead to a means for growing artificial organs.

Up till now, researchers have been able to grow sophisticated tissue in two dimensions and very simple tissues in three. In this new effort, the researchers used technology from the microelectronics industry to build scaffolding that allowed for growth of highly sophisticated in ways that mimic nature.

When growing tissue in three dimensions, a way must be found to cause it to grow in certain ways, rather than as simple blobs—otherwise it won't function as it would naturally. With the heart for example, must line up to allow for squeezing in just the right way to force blood through the chambers of the heart. To artificially reproduce such tissue the researchers modified a device that normally allows for stacking thin materials onto circuit boards. In their lab, the machine allows for stacking a flat rubber polymer with holes in it on top of another in such a way as to align the holes in just the right way to cause to grow through them into the types of fibers that mimic normal heart tissue—a type known as .

Positioning several of the rubber sheets, one on top of another, allowed for the growth of three-dimensional tissue that mimics tissue naturally found in the heart. Once grown, the tissue was found to beat in response to electrical stimulation.

At this point, the heart tissue grown is still too thin to support blood vessels, so further research will have to be done to find a way to make it thicker. In the meantime, the researchers plan to apply some of the newly grown tissue to rat hearts that have been damaged to see if it can help serve as a repair material.

Explore further: New tissue engineering breakthrough encourages nerve repair

More information: DOI: 10.1002/adma.201301016

Related Stories

New tissue engineering breakthrough encourages nerve repair

July 8, 2013
A new combination of tissue engineering techniques could reduce the need for nerve grafts, according to new research by The Open University. Regeneration of nerves is challenging when the damaged area is extensive, and surgeons ...

Straight from the heart: An elastic patch that supports cardiac cell growth

April 29, 2013
(Medical Xpress)—Scientists are a step closer to being able to repair damaged human heart tissue thanks to a world leading research collaboration between the University of Sydney and Harvard University.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.