Researcher studies protein's role in aging

July 24, 2013 by Angela Herring

With time, the amino acid known as asparagine will eventually degrade. Long considered a type of protein "damage," the phenomenon has come to be accepted as yet another part of aging: our hair turns gray, our joints begin to ache, and our asparagine turns into isoaspartic acid.

The surprising thing about this change is that it forces the protein's backbone to follow a new track, just like a railroad switch sends a train on an entirely different journey. "This is exceptionally rare," said chemistry and associate professor Sunny Zhou, who recently received a $1 million grant from the National Institutes of Health to study the etiologic role of isoaspartic acid, or isoAsp, in aging and disease. It's research that could dramatically change how doctors treat diseases such as Alzheimer's, which significantly elevates patients' isoAsp levels.

According to Zhou, the rate at which isoAsp forms depends on the sequence of in the protein. If asparagine sits next to the amino acid proline, it will take a long time to degrade. If it's next to glycine, on the other hand, it may take just half a day. Luckily, there's an . The enzyme "protein isoaspartate ," or PIMT, can rectify the damage.

The degradation process that leads to isoAsp happens in virtually all cells and PIMT is present in almost all animal systems except baker's yeast; how regulate isoAsp remains a mystery. Additionally, animal studies have shown that eliminating PIMT from the body does reduce life expectancy—but not through aging. "IsoAsp levels in these animals increase," said Zhou. "But only twofold, not tenfold." This suggests something else must be at play in the regulation process in other animals too, not just yeast.

IsoAsp has the same as aspartic acid, making it extremely difficult to detect. At least it used to be. In previous research as a faculty fellow at Northeastern's Barnett Institute of Chemical and Biological Analysis, Zhou helped develop a method for easily tracking it down.

Degradation cannot be prevented, he said, because it happens spontaneously. But if researchers found a way to repair the damage, their work could have a significant effect on the ability to treat age-related disease such as Alzheimer's.

"If we can find the machinery that gets rid of isoaspartic faster, then we can somehow use a driver to boost that machinery," Zhou said, noting that the damaged cells in an Alzheimer's brain contain up 70 percent isoaspartic acid. "That's the hope."

Explore further: Stress hormone could trigger mechanism for the onset of Alzheimer's

Related Stories

Stress hormone could trigger mechanism for the onset of Alzheimer's

June 21, 2013
(Medical Xpress)—A chemical hormone released in the body as a reaction to stress could be a key trigger of the mechanism for the late onset of Alzheimer's disease, according to a study by researchers at Temple University.

Dietary supplement linked to increased muscle mass in the elderly

June 17, 2013
A supplemental beverage used to treat muscle-wasting may help boost muscle mass among the elderly, according to a new study. The results were presented today at The Endocrine Society's 95th Annual Meeting in San Francisco.

Recommended for you

New understanding of how muscles work

August 23, 2017
Muscle malfunctions may be as simple as a slight strain after exercise or as serious as heart failure and muscular dystrophy. A new technique developed at McGill now makes it possible to look much more closely at how sarcomeres, ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.