ITN type 1 diabetes study identifies subset of patients with strong response to therapy

August 15, 2013, Immune Tolerance Network

Primary results from a new clinical trial show that patients with type 1 diabetes treated with the monoclonal antibody teplizumab (MacroGenics, Inc.) exhibit greater preservation of C-peptide, a biomarker of islet cell function, compared to controls. Further analyses identified a discrete subset of the treatment group that demonstrated especially robust responses ("responders"), suggesting that these patients could be identified prior to treatment. The trial, entitled "Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes" (AbATE), was conducted by the Immune Tolerance Network (ITN). The results are available online and will be published in the November issue of the journal Diabetes.

The AbATE study, led by Kevan Herold, MD (Yale University), tested teplizumab, which targets the CD3 receptor found on T cells, in patients with new-onset . CD3 is required for T-cell activation, which can lead to the destruction of insulin-producing beta cells. A previous ITN study with teplizumab showed that a single course of the drug slowed C-peptide decline in new-onset patients for a year, after which the effects waned. The aim of the AbATE study was to test whether C-peptide preservation could be prolonged by administering two courses of teplizumab, one year apart.

In this open-label, Phase II study, 77 new-onset patients (ages 8 to 30 years old) were randomized to receive either teplizumab or a control. Those in the treatment arm received the scheduled treatment consisting of two 14-day courses of teplizumab, one year apart. Both arms received intensive from certified diabetes educators and were followed for two years. The primary endpoint compared C-peptide preservation between the two groups.

After two years, the teplizumab-treated group showed significantly greater preservation of C-peptide (75-percent higher responses compared to the control group).

Further analysis revealed that within the treatment arm two groups of patients could be distinguished based on their C-peptide levels: one group, considered "responders" (22/49), showed very little C-peptide decline over the course of the study (only a 6 percent reduction from baseline), while the "non-responders" (27/49) exhibited a similar rate of C-peptide decline as the (less than 40-percent reduction from baseline).

Investigators measured various biomarkers and cell types that might distinguish between these two groups. They found that, at trial entry, "responders" had lower hemoglobin A1c levels (a marker of glucose concentration in the blood) and used less insulin at baseline, compared to "non-responders". Differences in specific T-cell subsets also distinguished between the two groups at baseline, suggesting that immune status might contribute to drug responsiveness. However, further studies will be required to confirm these results.

"This overall approach to identifying characteristics of individuals most likely to respond to therapies shows great promise because the responders in this study experienced a robust and prolonged drug effect," said Dr. Herold. "This type of response has not been seen in other studies of immune therapies."

Type 1 diabetes is a disease marked by immune destruction of insulin-producing in the pancreas. New-onset patients usually have 20 to 40 percent of their normal beta cell mass remaining, which is still capable of producing insulin. Preserving this remaining mass, even temporarily, could improve long-term clinical outcomes.

Immune modulators, like teplizumab, represent a promising means of inducing tolerance; however, no drug has been shown to prevent or reverse disease, and only a few have temporarily delayed disease progression. The ability to identify a subgroup of patients who may be more responsive to therapy could greatly enhance the clinical use of immune modulators and improve outcomes for those . Further analyses with specimens collected from the AbATE study are ongoing to understand the mechanism of response.

Explore further: Drug preserves beta cells in new cases of type 1 diabetes

Related Stories

Drug preserves beta cells in new cases of type 1 diabetes

August 6, 2013
(Medical Xpress)—A drug in clinical trials has been shown to preserve insulin-producing pancreatic beta cells in nearly half of subjects newly diagnosed with type 1 diabetes. Results of the phase 2 trials are published ...

Immune intervention reduces beta-cell death in type 1 diabetes

February 26, 2013
(HealthDay)—Patients recently diagnosed with type 1 diabetes have greater death of pancreatic β-cells compared with patients with long-standing diabetes, which can be reduced by treatment with teplizumab, according to ...

Study finds some insulin production in long-term Type 1 diabetes

February 21, 2012
Massachusetts General Hospital (MGH) research has found that insulin production may persist for decades after the onset of type 1 diabetes. Beta cell functioning also appears to be preserved in some patients years after apparent ...

Could dietary tweaks ease type 1 diabetes?

August 2, 2013
(HealthDay)—Eating foods that contain certain nutrients may help people with newly diagnosed type 1 diabetes continue producing some insulin for as long as two years, a new study finds.

Andromeda Biotech: A drug for type 1 diabetes

November 22, 2011
The treated patients in the double-blinded study of DiaPep 277 showed significantly better pancreas function that the control group.

Seasonal changes may influence the efficacy of vaccination against diabetes

February 1, 2012
The development of a medicine for patients with type 1 diabetes mellitus, based on autoantigen GAD65, received a setback following crucial clinical phase 3 trials that failed to show significant effects. One possible explanation ...

Recommended for you

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.