MRSA strain in humans originally came from cattle, research says

August 13, 2013, American Society for Microbiology

A strain of bacteria that causes skin and soft tissue infections in humans originally came from cattle, according to a study to be published in mBio, the online open-access journal of the American Society for Microbiology. The researchers who conducted the genetic analysis of strains of Staphylococcus aureus known as CC97 say these strains developed resistance to methicillin after they crossed over into humans around forty years ago. Today, methicillin-resistant S. aureus (MRSA) strain CC97 is an emerging human pathogen in Europe, North and South America, Africa, and Asia. The findings highlight the potential for cows to serve as a reservoir for bacteria with the capacity for pandemic spread in humans.

The researchers sequenced the genomes of 43 different CC97 isolates from humans, cattle, and other animals, and plotted their in a . Corresponding author Ross Fitzgerald of the Roslin Institute and the University of Edinburgh in Scotland says strains of CC97 found in cows appear to be the ancestors of CC97 strains from humans.

"Bovine strains seemed to occupy deeper parts of the phylogenetic tree - they were closer to the root than the human strains. This led us to conclude that the strains infecting humans originated in cows and that they had evolved from bovine to jumps," says Fitzgerald.

Although the CC97 strains from animals were quite genetically diverse, the human isolates cluster together in two tight, distinct "clades", or relatedness groups, indicating that S. aureus CC97 in cattle crossed over into humans on two separate occasions. Using as a , the authors determined that the ancestor of clade A jumped from a bovine host to humans between 1894 and 1977 and clade B made the jump between 1938 and 1966.

After they made the jump, the human CC97 strains acquired some new capabilities, says Fitzgerald, thanks to genes encoded on portable pieces of DNA called mobile genetic elements.

"It seems like these elements, such as pathogenicity islands, phages, and plasmids, are important in order for the bacterium to adapt to different host species," says Fitzgerald. "The reverse is true as well: the bovine strains have their own mobile genetic elements."

Perhaps the most problematic new capability the human strains acquired is the ability to resist methicillin, an important antibiotic for fighting staphylococcal infections. Only human strains of CC97 were able to resist the drug, which indicates that the bacteria acquired resistance after they crossed over into humans, presumably through exposure to antibiotics prescribed for treating human infections.

This sequence of events contrasts with the case of a S. aureus strain from pigs, Fitzgerald points out, since a study in 2012 revealed that MRSA ST398 strains evolved the ability to resist methicillin before they crossed over into humans (http://mbio.asm.org/content/3/1/e00305-11). Any number of factors could create these differences, making pigs - but not cattle - a source of a drug-resistant bacterium. At this point, though, there isn't enough information to say whether differences in the S. aureus strains, differences between pigs and cattle, or differences between swine and dairy farming practices might be responsible.

Moving forward, Fitzgerald says he and his colleagues plan to widen the investigation.

"We have a relatively small sample size, and the findings are robust, but we want to extend the study now to include a greater number of clones to get a bigger picture of what's going on across the S. aureus species," says Fitzgerald.

A wider variety of S. aureus strains, Fitzgerald says, from a wider variety of locations and hosts and a wider range of time, will allow them to better pinpoint the timing and circumstances of the host jump events. Understanding how and when MRSA has crossed over from other species in the past can help us to put the brakes on these crossovers in the future and hopefully prevent the birth of the next pandemic S. aureus strain.

Explore further: MRSA in livestock acquired drug resistance on the farm, now infects humans

Related Stories

MRSA in livestock acquired drug resistance on the farm, now infects humans

February 21, 2012
Researchers have discovered that a strain of methicillin-resistant Staphylococcus aureus (MRSA) bacteria that humans contract from livestock was originally a human strain, but it developed resistance to antibiotics once it ...

Workers at industrial farms carry drug-resistant bacteria associated with livestock

July 2, 2013
A new study found drug-resistant bacteria associated with livestock in the noses of industrial livestock workers in North Carolina but not in the noses of antibiotic-free livestock workers. The drug-resistant bacteria examined ...

Drug-resistant MRSA bacteria: Here to stay in both hospital, community

March 15, 2013
(Medical Xpress)—The drug-resistant bacteria known as MRSA, once confined to hospitals but now widespread in communities, will likely continue to exist in both settings as separate strains, according to a new study.

How one strain of MRSA becomes resistant to last-line antibiotic

May 22, 2012
Researchers have uncovered what makes one particular strain of methicillin-resistant Staphylococcus aureus (MRSA) so proficient at picking up resistance genes, such as the one that makes it resistant to vancomycin, the last ...

Sequencing tracks animal-to-human transmission of bacterial pathogens

March 25, 2013
Researchers have used whole genome sequencing to reveal if drug-resistant bacteria are transmitted from animals to humans in two disease outbreaks that occurred on different farms in Denmark. The results, which are published ...

March of the superbugs

February 14, 2013
Every so often, research laboratories and hospitals testing patients for the superbug methicillin-resistant Staphylococcus aureus (MRSA) have come across an oddity: a strain that appeared to be MRSA because it was resistant ...

Recommended for you

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.