Nanoparticle could identify heart attack risk

August 30, 2013 by Rachel Coker
Nanoparticle could identify heart attack risk

A Binghamton University researcher hopes to give doctors a more accurate way of determining a patient's risk of heart attack or stroke.

Amber Doiron, assistant professor of , says current methods of assessing atherosclerosis—commonly known as hardening of the arteries—are not terribly accurate. Some 30 percent of deaths worldwide can be attributed to the disease, which occurs when fat, cholesterol and other particles form hard structures called plaques in the walls of arteries.

"It's really a guessing game right now," she says. "Doctors use factors like blood pressure and to get an idea of a patient's risk. Then they use plaque size as a general measure of whether a person has the disease. But there's a fairly poor correlation between plaque size and heart attack or stroke."

Doiron, who has an interest in as well as expertise in nanoscience, wants to help physicians do a better job of identifying which plaques are cause for concern.

She and a Temple University colleague recently received a two-year, $418,000 grant from the National Institute of Biomedical Imaging and Bioengineering to support this project. It's a notable success in part because this was Doiron's first National Institutes of Health grant proposal.

The researchers will use a combination of polymers and superparamagnetic for the study. The nanoparticle is sensitive to oxidative stress, which occurs in atherosclerosis and has been linked to patients who have a higher prevalence of heart attack and stroke. Using an MRI scan, the researchers will be able to see how active the nanoparticle is, which will indicate whether the plaque is stable.

"A stroke or a heart attack doesn't necessarily come when a plaque fully blocks the flow of blood through an artery," Doiron explains. "What happens is the plaque ruptures and the gunk that underlies the plaque is exposed to blood and a clot forms. The clot builds quickly—on an hour time scale as opposed to over years—and the clot can grow there until it blocks flow, or it can dislodge and block flow somewhere else. Most heart attacks do not occur from a full blockage of plaque. It happens because the plaque bursts. Same thing with strokes. That's why size isn't necessarily indicative of how dangerous a plaque is."

The discovery of a molecule or a cell type that indicated which plaques are safe and which ones are dangerous would be a huge breakthrough, Doiron says. She thinks oxidative stress may be such an indicator.

"Atherosclerosis is an incredibly complex disease that progresses over decades," Doiron says. "It's hard to tell who's walking around with plaques that are stable, relatively safe, and who has plaques that may cause a heart attack tomorrow. For some patients, the first sign of trouble is a heart attack."

Explore further: MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque

Related Stories

MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque

April 5, 2013
Researchers from Boston University School of Medicine (BUSM) have shown that using magnetic resonance imaging (MRI) to measure blood flow over atherosclerotic plaques could help identify plaques at risk for thrombosis. The ...

Atherosclerosis in abdominal aorta may signal future heart attack, stroke

June 18, 2013
In a study of more than 2,000 adults, researchers found that two MRI measurements of the abdominal aorta—the amount of plaque in the vessel and the thickness of its wall—are associated with future cardiovascular events, ...

Genetic 'signature' discovered in plaque

August 4, 2011
Italian researchers may have identified a genetic "signature" for dangerous plaque that leads to stroke.

New signal stabilizes atherosclerotic plaques

July 31, 2013
Atherosclerosis is an inflammatory disease with accumulation of cholesterol in the vessel walls. The atherosclerotic plaque is built up throughout life and when it ruptures it leads to heart attack or stroke. T cells are ...

Spectrum Health study first to identify heart attack-causing plaque in living patients (w/ Video)

July 17, 2013
We may be closer to predicting who is at risk for a heart attack, according to a recently published Spectrum Health study.

Atherosclerotic plaques' downstream spread linked to low shear stress

November 15, 2011
In human coronary arteries, atherosclerotic plaques tend to spread downstream because of the changes in blood flow patterns the plaque causes, researchers have found.

Recommended for you

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.