World-first research to explain why actions speak louder than words

August 9, 2013
World-first research to explain why actions speak louder than words

An innovative series of experiments could help to unlock the mysteries of how the brain makes sense of the hustle and bustle of human activity we see around us every day.

Very little is known about the which enable us to pick out a potential mugger from a busy street or to spot an old friend approaching us across a crowded room. Such of social intention, which we make countless times each day, enable us to respond in appropriate ways to the dynamic and complex world around us.

George Mather, Professor of Vision Science at the University of Lincoln, UK, and one of the world's foremost experts on human visual perception, will lead a new research project investigating the mechanisms behind this crucial ability to perceive and interpret the intentions of other people from the way they move.

Numerous experiments have explored the way we use to extract meaning from our environment, but most have been based on static images, such as photos of different . Other studies into the perception of moving images have relied on very simple animated scenes, like moving patterns of regularly-spaced lines or random dots, devoid of the richness and nuances of scenes from the 'real world'.

There remains limited scientific understanding of how the human makes sense of the flurry of movement we see around us in modern societies: for example, whether a person approaching us is sprinting or strolling, whether that means they are angry or calm, and how we should react in response.

Professor Mather aims to bridge this gap in the academic literature through a series of world-first experiments. He has been awarded a grant of £287,000 by the UK's Economic & Social Research Council (ESRC) for a three-year study. The aim is to shed new light on the process by which the human visual system identifies and decodes 'dynamic cues of social intention'.

Professor Mather said: "It's true that actions speak louder than words. Perception of movement is fundamental to many of our everyday social interactions. But simply judging speed is in itself a very complex task. When you see somebody walking across your field of view, how do you know how fast they are going? That information can be very useful because it might tell you something about their intentions but it's surprisingly difficult to make an accurate judgement. A basic problem is that the further away a moving object is, the slower it moves in the image received by the eye. We don't really understand at the moment how the human visual system is able to compensate for different viewing conditions."

Motion perception has been a consistent theme of Professor Mather's research career. In previous studies he has shown that the brain can deduce socially meaningful information from very simple depictions of human movement, such as collections of dots denoting the major joints of the body.

The research in this latest project will answer fundamental questions about how the brain combines 'low-level' information about image motion with 'high level' knowledge of the social world to make meaningful assessments of the speed and nature of human movements.

Explore further: Impaired visual signals might contribute to schizophrenia symptoms

Related Stories

Impaired visual signals might contribute to schizophrenia symptoms

July 29, 2013
By observing the eye movements of schizophrenia patients while playing a simple video game, a University of British Columbia researcher has discovered a potential explanation for some of their symptoms, including difficulty ...

Are people really staring at you?

April 9, 2013
(Medical Xpress)—People often think that other people are staring at them even when they aren't research led by the University of Sydney has found.

Enhanced motion perception in autism may point to an underlying cause of the disorder

May 8, 2013
Children with autism see simple movement twice as quickly as other children their age, and this hypersensitivity to motion may provide clues to a fundamental cause of the developmental disorder, according to a new study.

Neuroscientists find greater complexity in how we perceive motion

December 5, 2011
How we perceive motion is a significantly more complex process than previously thought, researchers at New York University's Center for Neural Science, Stanford University and the University of Washington have found. Their ...

Memories may skew visual perception

July 20, 2011
Taking a trip down memory lane while you are driving could land you in a roadside ditch, new research indicates. Vanderbilt University psychologists have found that our visual perception can be contaminated by memories of ...

Scientists help explain visual system's remarkable ability to recognize complex objects

July 2, 2013
How is it possible for a human eye to figure out letters that are twisted and looped in crazy directions, like those in the little security test internet users are often given on websites?

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.