'Love hormone' oxytocin may play wider role in social interaction than previously thought

September 11, 2013, Stanford University Medical Center
Credit: Nature Publishing Group

Researchers at the Stanford University School of Medicine have shown that oxytocin - often referred to as "the love hormone" because of its importance in the formation and maintenance of strong mother-child and sexual attachments - is involved in a broader range of social interactions than previously understood.

The discovery may have implications for neurological disorders such as autism, as well as for scientific conceptions of our evolutionary heritage.

Scientists estimate that the advent of social living preceded the emergence of pair living by 35 million years. The new study suggests that 's role in one-on-one bonding probably evolved from an existing, broader affinity for group living.

Oxytocin is the focus of intense scrutiny for its apparent roles in establishing trust between people, and has been administered to children with autism spectrum disorders in clinical trials. The new study, to be published Sept. 12 in Nature, pinpoints a unique way in which oxytocin alters activity in a part of the brain that is crucial to experiencing the pleasant sensation neuroscientists call "reward." The findings not only provide validity for ongoing trials of oxytocin in , but also suggest possible new treatments for in which social activity is impaired.

"People with autism-spectrum disorders may not experience the normal reward the rest of us all get from being with our friends," said Robert Malenka, MD, PhD, the study's senior author. "For them, social interactions can be downright painful. So we asked, what in the brain makes you enjoy hanging out with your buddies?"

Some suggests the awkward that is a hallmark of may be at least in part oxytocin-related. Certain variations in the gene that encodes the - a cell-surface protein that senses the substance's presence - are associated with increased autism risk.

Malenka, the Nancy Friend Pritzker Professor in Psychiatry and Behavioral Sciences, has spent the better part of two decades studying the reward system - a network of interconnected brain regions responsible for our sensation of pleasure in response to a variety of activities such as finding or eating food when we're hungry, sleeping when we're tired, having sex or acquiring a mate, or, in a pathological twist, taking addictive drugs. The reward system has evolved to reinforce behaviors that promote our survival, he said.

For this study, Malenka and lead author Gül Dölen, MD, PhD, a postdoctoral scholar in his group with over 10 years of autism-research expertise, teamed up to untangle the complicated neurophysiological underpinnings of oxytocin's role in social interactions. They focused on biochemical events taking place in a brain region called the nucleus accumbens, known for its centrality to the reward system.

In the 1970s, biologists learned that in prairie voles, which mate for life, the nucleus accumbens is replete with oxytocin receptors. Disrupting the binding of oxytocin to these receptors impaired prairie voles' monogamous behavior. In many other species that are not monogamous by nature, such as mountain voles and common mice, the nucleus accumbens appeared to lack those receptors.

"From this observation sprang a dogma that pair bonding is a special type of social behavior tied to the presence of oxytocin receptors in the nucleus accumbens. But what's driving the more common group behaviors that all mammals engage in - cooperation, altruism or just playing around - remained mysterious, since these oxytocin receptors were supposedly absent in the nucleus accumbens of most social animals," said Dölen.

The new discovery shows that mice do indeed have oxytocin receptors at a key location in the nucleus accumbens and, importantly, that blocking oxytocin's activity there significantly diminishes these animals' appetite for socializing. Dölen, Malenka and their Stanford colleagues also identified, for the first time, the nerve tract that secretes oxytocin in the region, and they pinpointed the effects of oxytocin release on other nerve tracts projecting to this area.

Mice can squeak, but they can't talk, Malenka noted. "You can't ask a mouse, 'Hey, did hanging out with your buddies a while ago make you happier?'" So, to explore the social-interaction effects of oxytocin activity in the nucleus accumbens, the investigators used a standard measure called the conditioned place preference test.

"It's very simple," Malenka said. "You like to hang out in places where you had fun, and avoid places where you didn't. We give the mice a 'house' made of two rooms separated by a door they can walk through at any time. But first, we let them spend 24 hours in one room with their littermates, followed by 24 hours in the other room all by themselves. On the third day we put the two rooms together to make the house, give them complete freedom to go back and forth through the door and log the amount of time they spend in each room."

Mice normally prefer to spend time in the room that reminds them of the good times they enjoyed in the company of their buddies. But that preference vanished when oxytocin activity in their nucleus accumbens was blocked. Interestingly, only social activity appeared to be affected. There was no difference, for example, in the mice's general propensity to move around. And when the researchers trained the mice to prefer one room over the other by giving them cocaine (which mice love) only when they went into one room, blocking oxytocin activity didn't stop the mice from picking the cocaine den.

In an extensive series of sophisticated, highly technical experiments, Dölen, Malenka and their teammates located the oxytocin receptors in the murine nucleus accumbens. These receptors lie not on nucleus accumbens nerve cells that carry signals forward to numerous other reward-system nodes but, instead, at the tips of nerve cells forming a tract from a brain region called the dorsal Raphe, which projects to the nucleus accumbens. The dorsal Raphe secretes another important substance, serotonin, triggering changes in nucleus accumbens activity. In fact, popular antidepressants such as Prozac, Paxil and Zoloft belong to a class of drugs called serotonin-reuptake inhibitors that increase available amounts of serotonin in brain regions, including the nucleus accumbens.

As the Stanford team found, oxytocin acting at the nucleus accumbens wasn't simply squirted into general circulation, as hormones typically are, but was secreted at this spot by another nerve tract originating in the hypothalamus, a multifunction midbrain structure. Oxytocin released by this tract binds to receptors on the dorsal Raphe projections to the nucleus accumbens, in turn liberating serotonin in this key node of the brain's reward circuitry. The serotonin causes changes in the activity of yet other nerve tracts terminating at the nucleus accumbens, ultimately resulting in altered nucleus accumbens activity - and a happy feeling.

"There are at least 14 different subtypes of serotonin receptor," said Dölen. "We've identified one in particular as being important for social reward. Drugs that selectively act on this receptor aren't clinically available yet, but our study may encourage researchers to start looking at drugs that target it for the treatment of diseases such as autism, where social interactions are impaired."

Malenka and Dölen said they think their findings in mice are highly likely to generalize to humans because the brain's reward circuitry has been so carefully conserved over the course of hundreds of millions of years of evolution. This extensive cross-species similarity probably stems from pleasure's absolutely essential role in reinforcing behavior likely to boost an individual's chance of survival and procreation.

Explore further: A cautionary note on oxytocin as a treatment for psychiatric disorders

More information: Paper: dx.doi.org/10.1038/nature12518

Related Stories

A cautionary note on oxytocin as a treatment for psychiatric disorders

August 12, 2013
The hormone oxytocin is known for its widespread effects on social and reproductive processes, and recent data from intranasal administration in humans has produced hope for its use as a therapeutic in autism, schizophrenia, ...

Are you an avid Facebook user? It's all about your nucleus accumbens

August 29, 2013
A person's intensity of Facebook use can be predicted by activity in a reward-related area of the brain, according to a new study published in the open-access journal Frontiers in Human Neuroscience.

Making the brain take notice of faces in autism

August 15, 2013
Difficulty in registering and responding to the facial expressions of other people is a hallmark of autism spectrum disorder (ASD). Relatedly, functional imaging studies have shown that individuals with ASD display altered ...

Surprise finding shows oxytocin strengthens bad memories and can increase fear and anxiety

July 22, 2013
It turns out the love hormone oxytocin is two-faced. Oxytocin has long been known as the warm, fuzzy hormone that promotes feelings of love, social bonding and well-being. It's even being tested as an anti-anxiety drug. But ...

No oxytocin benefit for autism

July 18, 2013
The so-called trust hormone, oxytocin, may not improve the symptoms of children with autism, a large study led by UNSW researchers has found.

Study reveals potential role of 'love hormone' oxytocin in brain function

August 4, 2013
In a loud, crowded restaurant, having the ability to focus on the people and conversation at your own table is critical. Nerve cells in the brain face similar challenges in separating wanted messages from background chatter. ...

Recommended for you

Intensive behavior therapy no better than conventional support in treating teenagers with antisocial behavior

January 19, 2018
Research led by UCL has found that intensive and costly multisystemic therapy is no better than conventional therapy in treating teenagers with moderate to severe antisocial behaviour.

Babies' babbling betters brains, language

January 18, 2018
Babies are adept at getting what they need - including an education. New research shows that babies organize mothers' verbal responses, which promotes more effective language instruction, and infant babbling is the key.

College branding makes beer more salient to underage students

January 18, 2018
In recent years, major beer companies have tried to capitalize on the salience of students' university affiliations, unveiling marketing campaigns and products—such as "fan cans," store displays, and billboard ads—that ...

Inherited IQ can increase in early childhood

January 18, 2018
When it comes to intelligence, environment and education matter – more than we think.

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

Baby brains help infants figure it out before they try it out

January 17, 2018
Babies often amaze their parents when they seemingly learn new skills overnight—how to walk, for example. But their brains were probably prepping for those tasks long before their first steps occurred, according to researchers.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Thereminator
not rated yet Nov 04, 2013
Wow....mice like cocaine! Better write that down. : )

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.