Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013, RIKEN
Figure 1: Channelrhodopsin-2 expression (red) in the dentate gyrus of the hippocampus. Credit: 2013 AAAS

The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, such as in the justice system and in our navigation of the world. Susumu Tonegawa, Steve Ramirez, Xu Liu and colleagues at the RIKEN-MIT Center for Neural Circuit Genetics, have gained insight into the creation of mistaken memories by using light activation of neurons to generate an incorrect fear memory in mice.

The researchers allowed mice to explore a novel location and used genetic techniques to label neurons in the hippocampus—a part of the brain linked to —that were activated in the process with a special channel called channelrhodopsin-2 (Fig. 1). The cells that expressed this channel could then be artificially activated by light. In this way, the researchers were able to reactivate neurons that fired in that particular location, even if the mice were no longer there.

They then moved the mice to another location where they were exposed to foot shocks, causing the mice to exhibit immobility, a fear behavior. At the same time, the researchers used light to activate the channelrhodopsin-2-expressing neurons that had fired in the first location.

When Tonegawa and his colleagues moved the animals to a third location, they did not show . Yet when the mice went back to the first location, where they had never experienced a foot shock, the mice now exhibited prominent freezing behavior. The researchers had generated a 'false memory' in the mice of foot shocks in a location in which they had never been exposed to them.

The researchers showed that light reactivation of in the central area of the hippocampus, called the dentate gyrus, could create , while reactivation of the outer 'CA1' area of the hippocampus could not. Tonegawa and his colleagues suggest that this is because mouse exploration of different locations leads to activation of more overlapping neuronal networks in the CA1 than in the . "This may reflect the fundamental differences of how memories are encoded in these two regions," explains Liu.

The findings provide insight into how the brain encodes and processes memories and could one day lead to treatments for post-traumatic stress disorder. "Our work may also have implications for situations where patients mix reality with their own imaginations, such as in schizophrenia," says Liu.

Explore further: Neuroscientists show ability to plant false memories

More information: Ramirez, S., et al. Creating a false memory in the hippocampus, Science 341, 387–391 (2013). DOI: 10.1126/science.1239073

Related Stories

Neuroscientists show ability to plant false memories

July 25, 2013
The phenomenon of false memory has been well-documented: In many court cases, defendants have been found guilty based on testimony from witnesses and victims who were sure of their recollections, but DNA evidence later overturned ...

The neuroscience of finding your lost keys: How the brain keeps track of similar but distinct memories

March 21, 2013
Ever find yourself racking your brain on a Monday morning to remember where you put your car keys? When you do find those keys, you can thank the hippocampus, a brain region responsible for storing and retrieving memories ...

Researchers show that memories reside in specific brain cells

March 23, 2012
Our fond or fearful memories — that first kiss or a bump in the night — leave memory traces that we may conjure up in the remembrance of things past, complete with time, place and all the sensations of the experience. ...

Memory formation triggered by stem cell development

February 23, 2012
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.