New MRI technique can detect genetic condition that attacks the heart, brain and nerves

October 2, 2013

A genetic condition that attacks multiple organs and usually results in fatal heart problems can be detected using a new MRI technique that was developed at the University of Alberta. The discovery of this new diagnostic tool has resulted in updated clinical guidelines for the diagnosis and treatment of Fabry disease in Canada.

Faculty of Medicine & Dentistry researchers Gavin Oudit and Richard Thompson worked with Faculty colleagues Kelvin Chow and Alicia Chan on the discovery, as well as Aneal Khan from the University of Calgary. The findings were recently published in the peer-reviewed journal, Circulation – Cardiovascular Imaging, and involved 31 Alberta patients who have the disease.

Thompson and trainee Chow developed the MRI technique known as T1 mapping which can detect heart damage and changes at early stages—earlier than regular MRI scans or ultrasound. When this type of MRI is used on patients with Fabry disease, the scans can detect both the disease and the severity of damage to the heart. The T1 mapping method developed by Thompson's group can be easily programmed onto MRIs around the world.

"This test can uniquely identify Fabry disease by detecting microscopic changes in the heart muscle structure that are not visible on regular images," says Thompson, who works in the Department of Biomedical Engineering. "Fabry disease can look like other diseases if you only look at the whole heart structure or function, but this T1 mapping test, that can detect the tiniest changes in the heart, could identify all the patients with Fabry disease."

Oudit added: "It is very likely that this technique will become a key part in clinical examination of patients with Fabry disease. This finding will advance the clinical care of these patients around the world. The implications will be widespread.

"Heart disease is the number one cause of death for patients with Fabry disease. The earlier the disease can be pinpointed, the sooner treatment can start. The treatment for the disease halts the condition and prevents serious damage to the heart."

Fabry disease is a genetic metabolic condition that destroys the enzyme involved in fat metabolism. This enzyme breaks down fat so without it, those with the disease accumulate deadly fat deposits in their heart, kidneys and brain. The condition affects 1 in 1,500 to 3,000 people, but was originally thought to be a rare disease. Some countries now screen newborns for the condition that costs $200,000 a year to treat through monthly infusions called enzyme replacement therapy. Symptoms of the disease include: heart failure, thickened walls of the heart, exercise intolerance, fluid buildup in the legs, blackouts, inability to lie down, strokes, tingling in the hands and feet, and changes in skin pigmentation.

It is estimated that about 1,000 Albertans are living with the disease but not everyone who has the condition has been diagnosed. Sometimes people will see scores of kidney and heart specialists for years before anyone diagnoses the condition. Men can have a blood test to identify the condition, while women—who may also carry the disease without showing symptoms—need to undergo genetic testing. The T1 mapping test can both pinpoint the disease and assess damage to the heart.

Oudit says the discovery of the new MRI technique "is a wonderful story of collaboration—of patients, clinicians, scientists and industry working together to find a new diagnostic tool." Oudit is a failure specialist who works in the Division of Cardiology in the Department of Medicine at the Mazankowski Alberta Heart Institute.

"As an organization, we are excited to be part of these developments through the research from the University of Alberta," says Mauro Chies, acting vice-president of clinical supports for Alberta Health Services. "This is a significant advancement in the detection of disease in a non-invasive environment for our patients. We hope to be able to advance these sequences on our MRIs in the near future, and look for ways to use it to evaluate and detect other disease conditions."

Explore further: New class of drug targets heart disease

Related Stories

New class of drug targets heart disease

September 17, 2013
(Edmonton) Researchers at the University of Alberta have developed a synthetic peptide that could be the first in a new class of drugs to treat heart disease, high blood pressure and diabetes.

Heart fat predicts risk of death in kidney disease patients

September 17, 2013
International cardiac research led by a University of Alberta medical scientist shows fat deposits around the heart—which can be spotted through simple CT scans—can help predict the risk of death in patients with chronic ...

MRI detects early effects of chemotherapy on children's hearts

June 9, 2013
MRI scans of children who have had chemotherapy can detect early changes in their hearts finds research in biomed Central's open access journal Journal of Cardiovascular Magnetic Resonance.

Heart MRI test can identify patients at high risk of heart attack, death

August 20, 2013
An imaging test commonly used to diagnose coronary artery disease has an untapped potential to predict which patients with the disease are at the greatest risk for heart attacks and other potentially deadly heart problems, ...

The hidden burden of heart disease

September 30, 2013
Pockets of Australia's population have among the highest rates of rheumatic heart disease in the world, with a reported incidence approaching that of sub-Saharan Africa, yet researchers say there is little public awareness ...

Protective molecule, ACE2, also proving its worth in diabetic patients

May 16, 2012
ACE2, a molecule that has been shown to prevent damage in the heart, is now proving to be protective of the major organs that are often damaged in diabetic patients.

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.