Study reveals how variant forms of APOE protein impact risk of Alzheimer's disease

November 20, 2013

Carrying a particular version of the gene for apolipoprotein E (APOE) is the major known genetic risk factor for the sporadic, late-onset form of Alzheimer's disease, but exactly how that variant confers increased risk has been controversial among researchers. Now an animal study led by Massachusetts General Hospital (MGH) investigators shows that even low levels of the Alzheimer's-associated APOE4 protein can increase the number and density of amyloid beta (A-beta) brain plaques, characteristic neuronal damage, and the amount of toxic soluble A-beta within the brain in mouse models of the disease. Introducing APOE2, a rare variant that has been associated with protection from developing Alzheimer's disease, into the brains of animals with established plaques actually reduced A-beta deposition, retention and neurotoxicity, suggesting the potential for gene-therapy-based treatment.

"Using a technique developed by our collaborators at the University of Iowa, we were able to get long-term expression of these human gene variants in the fluid that bathes the entire brain," says Bradley Hyman, MD, PhD, of the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND), senior author of the report in the Nov. 20 Science Translational Medicine. "Our results suggest that strategies aimed at decreasing levels of APOE4, the harmful form of the protein, and increasing concentrations of protective variant APOE2 could be helpful to patients."

The association between the APOE4 variant and increased Alzheimer's risk was first made more than 20 years ago. Subsequent research has established that carrying two copies of the harmful variant increases risk 12 times compared with having two copies of the more common form, APOE3. Inheriting the APOE2 variant, however, appears to cut the risk in half. The extremely rare gene variants that directly cause the familial forms of the disease all participate in the production and deposition of A-beta, but exactly how APOE variants contribute to the process has been poorly understood.

Secreted by certain brain cells, APOE is known to regulate cholesterol metabolism within the brain and can bind to A-beta peptides, suggesting that the different forms of the protein may affect whether and how toxic A-beta plaques form. While previous investigations into the protein's effects have used either mice in which gene expression was knocked out or transgenic animals that expressed human gene variants throughout their lifetimes, the MGH-MIND-led study used a different approach to investigate the effects of introducing the variant forms of the protein into brains in which plaque formation had already begun. They directly injected into the cerebrospinal fluid of a mouse model of Alzheimer's – adult animals in which plaques were well established – viral vectors carrying genes for one of the three APOE variants or a control protein.

Two month after the vectors had been injected, about 10 percent of the APOE in the brains of animals that received one of the variants was found to be the introduced human version. At five months after injection, examination of brain tissue revealed that the A-beta plaques in mice that received APOE4 injections were more numerous and significantly denser than those of mice receiving APOE2. The growth of plaques in animals receiving APOE3 was intermediate between that of the other two groups and similar to what was seen in control animals. Levels of A-beta in the blood of mice that received APOE2 were higher than in the other groups, suggesting that the protective variant had increased clearance of A-beta from the brain.

In a group of animals in which tiny implanted windows allowed direct imaging of brain tissue, the progression of A-beta plaque deposition was fastest in animals receiving APOE4 and slowest, sometimes even appearing to regress, in mice injected with APOE2. Signs of neuronal damage around plaques also varied depending on the APOE variant the animals received, and experiments in a different Alzheimer's model in which plaques appear more slowly showed that injection of APOE4 increased levels of free, soluble A-beta in the fluid that bathes the brain.

"This study has allowed us to sort out, in mice, which effects of the different types of APOE were most important to variation in amyloid plaque deposition," says Eloise Hudry, PhD, of MGH-MIND, lead author of the Science Translational Medicine report. "Our results imply that APOE-based therapeutic approaches may help to alleviate the progression of Alzheimer's disease. More study is needed to pursue that possibility and to investigate the potential use of this gene transfer technology to introduce other protective proteins into the brain."

Explore further: Unlikely gene variants work together to raise Alzheimer's risk

More information: "Gene Transfer of Human Apoe Isoforms Results in Differential Modulation of Amyloid Deposition and Neurotoxicity in Mouse Brain," by E. Hudry et al. Science Translational Medicine, 2013.

Related Stories

Unlikely gene variants work together to raise Alzheimer's risk

October 23, 2013
(Medical Xpress)—Studying spinal fluid from people at risk for Alzheimer's disease, researchers at Washington University School of Medicine in St. Louis have found that a gene variation that had not been considered risky ...

New perspective needed for role of major Alzheimer's gene

May 7, 2013
(Medical Xpress)—Scientists' picture of how a gene strongly linked to Alzheimer's disease harms the brain may have to be revised, researchers at Washington University School of Medicine in St. Louis have found.

ApoE4 Alzheimer's gene causes brain's blood vessels to leak, die

May 16, 2012
Common variants of the ApoE gene are strongly associated with the risk of developing late-onset Alzheimer's disease, but the gene's role in the disease has been unclear. Now, researchers funded by the National Institutes ...

Lack of immune cell receptor impairs clearance of amyloid beta protein from the brain

July 1, 2013
Identification of a protein that appears to play an important role in the immune system's removal of amyloid beta (A-beta) protein from the brain could lead to a new treatment strategy for Alzheimer's disease. The report ...

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011
(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.