Scientists offers way to disrupt fibrosis

November 10, 2013

A team of scientists that includes Saint Louis University researchers has identified a new way to intervene in the molecular and cellular cascade that causes fibrosis – a condition where the body's natural process of forming scars for wound healing goes into overdrive and causes diseases. The findings, published Nov. 10 in the advance online issue of Nature Medicine, demonstrate a potential novel therapeutic approach to treat fibrotic diseases such as idiopathic pulmonary fibrosis and liver fibrosis.

The research targets a pathway that turns off the trigger for the major molecular mediator of fibrosis, a protein called Transforming Growth Factor (TGF) beta. This protein is normally present in the body in an inactive state and must be turned on to cause fibrosis. Once activated, TGF beta protein stimulates cells called myofibroblasts to produce excess collagen, which is a principle component of scars.

The researchers showed that removing a gene in the myofibroblasts that makes a specific subset of proteins called alpha v integrins blocks the ability of these cells to trigger activation of TGF beta. Furthermore, they were able to replicate the effect of the gene deletion by treatment with a small molecule compound, thus opening the door to a potential new therapy for patients.

"This is the first foray into targeting not just a single integrin, but rather several integrins that appear to be working in concert to promote fibrosis," said David Griggs, Ph.D., Director of Biology at Saint Louis University's Center for World Health and Medicine and an author of the paper.

"We have developed small molecular compounds that selectively inhibit these integrins, which suppress TGF beta protein, and these have been effective in animal models of lung and liver fibrosis."

The small molecule was not only able to prevent fibrosis; it made fibrosis less severe even when the treatment was started after fibrosis had begun, Griggs added.

"It's really a platform technology that could be applied to a number of fibrotic conditions," Griggs said.

In tandem with the drug discovery research, scientists working on another part of the study found they could protect mice from pulmonary fibrosis, liver fibrosis and renal fibrosis by deleting a gene that makes the same specific integrins in myofibroblasts that were targeted by the drug.

"We want to hit the integrins that are linked to fibrosis, but leave integrins that are not involved in fibrosis alone," said Peter Ruminski, Executive Director of Saint Louis University's Center for World Health and Medicine and an author of the paper. "We're trying to bring TGF beta levels back to normal."

Fibrosis, which can occur in any of the body's organs, can contribute to deadly diseases by preventing organs from functioning properly because the fibrotic tissue hardens and swells. For instance, there is no FDA-approved treatment for pulmonary fibrosis, which has a high mortality rate and affects up to 150,000 Americans. Because there are no available drug treatments for pulmonary fibrosis in the US, the only effective therapy is an organ transplant. However transplants are expensive and demand for organs exceeds the supply, creating the need for more effective therapies.

The next steps, Ruminski said, are to determine exactly how much of the compound is needed to allow normal healing to occur instead of fibrosis. Scientists also need to study the best way to deliver the drug. Different fibrotic conditions could warrant different delivery methods, Ruminski speculated. For instance, an inhaled delivery method could be better to treat pulmonary fibrosis or a topical cream could be preferable for skin scarring, he said.

Explore further: Study reveals much-needed strategy to protect against deadly liver fibrosis

More information: Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs, DOI: 10.1038/nm.3282

Related Stories

Study reveals much-needed strategy to protect against deadly liver fibrosis

August 15, 2013
Chronic liver disease is a leading cause of death in the United States, in part because it often causes the formation of harmful scar tissue—a process known as fibrosis. A study published by Cell Press August 15 in the ...

Scarring cells revert to inactive state as liver heals

May 7, 2012
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, report that significant numbers of myofibroblasts – cells that produce the fibrous scarring in chronic ...

Researchers identify likely causes, treatment strategies for systemic scleroderma

October 9, 2013
Using mice, lab-grown cells and clues from a related disorder, Johns Hopkins researchers have greatly increased understanding of the causes of systemic sclerosis, showing that a critical culprit is a defect in the way certain ...

Pulmonary fibrosis: Between a ROCK and a hard place

February 22, 2013
Pulmonary fibrosis is a scarring or thickening of the lungs that causes shortness of breath, a dry cough, fatigue, chest discomfort, weight loss, a decrease in the ability of the lungs to transmit oxygen to the blood stream, ...

Researchers pinpoint sources of fibrosis-promoting cells that ravage organs

July 1, 2013
Scientists have tracked down and quantified the diverse origins of cells that drive fibrosis, the incurable, runaway wound-healing that scars and ultimately destroys organs such as the lungs, liver and kidneys.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.