Treatment target identified for a public health risk parasite

November 26, 2013, McGill University Health Centre
This is Dr. Momar Ndao looking at a biological sample in his laboratory at the National Reference Centre for Parasitology, RI-MUHC. Credit: Peter McCabe

In the developing world, Cryptosporidium parvum has long been the scourge of freshwater. A decade ago, it announced its presence in the United States, infecting over 400,000 people – the largest waterborne-disease outbreak in the county's history. Its rapid ability to spread, combined with an incredible resilience to water decontamination techniques, such as chlorination, led the National Institutes of Health (NIH) in the United Sates to add C. parvum to its list of public bioterrorism agents. Currently, there are no reliable treatments for cryptosporidiosis, the disease caused by C. parvum, but that may be about to change with the identification of a target molecule by investigators at the Research Institute of the McGill University Health Centre (RI-MUHC). The findings of this study have been recently published in the Antimicrobial Agents and Chemotherapy (AAC) journal.

"In the young, the elderly and immunocompromised people such as people infected with HIV/Aids, C. parvum is a very dangerous pathogen. Cryptosporidiosis is potentially life-threatening and can result in diarrhea, malnutrition, dehydration and weight loss," says first author of the study, Dr. Momar Ndao, Director of the National Reference Centre of Parasitology (NRCP) at the MUHC and an Assistant Professor of the Departments of Medicine, Immunology and Parasitology (Division of Infectious Diseases) at McGill University.

The oocysts of C. parvum, which are shed during the infectious stage, are protected from a thick wall that allows them to survive for long periods outside the body as they spread to a new host. C. parvum is a microscopic parasite that lives in the of humans and many other mammals. It is transmitted through the fecal-oral contact with an infected person or animal, or from the ingestion of contaminated water or food. Since the parasite is resistant to chlorine and difficult to filter, cryptosporidiosis epidemics are hard to prevent.

"Most protozoan (single-celled) parasites like C. parvum use enzymes called proteases to escape the body's immune defenses," explained Dr. Ndao, who is also a researcher in the Infection and Immunity Axis of the RI-MUHC. "In this study, we were able to identify a protease inhibitor that can block the parasite's ability to circumvent the immune system, and hide in intestinal cells called enterocytes, in order to multiply and destroy the intestinal flora."

The discovery, which was made in collaboration with US researchers, is the first time a molecular target has been found for the control of C. parvum. "The next step will be to conduct human clinical trials to develop an effective treatment for this parasite, which affects millions of people around the world," concludes Dr. Ndao.

Explore further: Genetic discovery will help fight diarrhea outbreaks

More information: aac.asm.org/content/early/2013 … AC.00734-13.abstract

Related Stories

Genetic discovery will help fight diarrhea outbreaks

June 13, 2012
Researchers at the University of East Anglia (UEA) have discovered unexpectedly large genetic differences between two similar species of the pathogenic Cryptosporidium parasite.

Food-borne tropical disease outbreak strikes the US

November 6, 2013
A food-borne illness is spreading quickly through the United States, an investigation by the Centers for Disease Control and Prevention (CDC) has revealed. The disease, called cyclosporiasis, is common to tropical and subtropical ...

Time to tackle cryptosporidiosis: Scientists call for crypto cure

November 13, 2013
A recent study involving more than 22,000 children in Africa and Asia revealed that the protozoan parasite Cryptosporidium is one of four pathogens responsible for the largest part of severe diarrhea in infants and toddlers.

Recommended for you

Everything big data claims to know about you could be wrong

June 19, 2018
When it comes to understanding what makes people tick—and get sick—medical science has long assumed that the bigger the sample of human subjects, the better. But new research led by UC Berkeley suggests this big-data ...

Diagnosing and treating disorders of early sex development

June 19, 2018
Diagnosing, advising on and treating disorders of early sex development represent a huge medical challenge, both for those affected and for treating physicians. In contrast to the earlier view, DSD (Difference of Sex Development) ...

BPA can induce multigenerational effects on ability to communicate

June 18, 2018
Past studies have shown that biparental care of offspring can be affected negatively when females and males are exposed to bisphenol A (BPA); however, previous studies have not characterized how long-term effects of BPA exposure ...

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.