Scientists find burglary-ring-like mechanism in lethal 'Contagion' virus

December 16, 2013
WSU virologist Hector Aguilar-Carreno and colleagues have discovered how efficient teamwork by proteins on the deadly Nipah virus help get the pathogen inside a healthy cell that's 10,000 times larger. Credit: Photo by Robert Hubner, WSU Photo Services

A team of scientists from Washington State University has discovered how one of the planet's most deadly known viruses employs burglary-ring-like teamwork to infiltrate the human cell.

Nipah virus is so menacing that the nation's top infectious disease experts served as consultants in the filmmaking of the 2011 medical thriller, "Contagion," which is based on a global Nipah outbreak.

The WSU researchers, led by virologist Hector Aguilar-Carreno, have found that two proteins on the surface of the virus communicate in a way similar to two skilled burglars – with one casing the human cell while the other waits for a signal to launch the break-in. Their findings were recently published in the medical journal PLOS Pathogens.

"Our study provides the most complete picture of what happens after Nipah virus attaches itself to the surface of the to gain entry," said Aguilar-Carreno of WSU's Paul G. Allen School for Global Animal Health. "This is important not only to our understanding of how Nipah is transmitted, but also for viruses of the same family that can cause serious human and animal diseases."

Those include measles, mumps, in humans and distemper in dogs, he said.

Invasion from inner space

Working with disabled Nipah microbes that can't cause infection, Aguilar-Carreno and his colleagues determined that two proteins act as forward scouts, with protein G sensing an opportunity to activate the break-and-enter and then signaling the go-ahead to protein F to start the fusion process.

This signal exchange is so efficient that it helps explain how a single, miniscule virus can launch full-blown disease, said Aguilar-Carreno.

"The virus is able to fuse its own membrane with the membrane of a healthy cell and then invade with its RNA. Once inside its cell host, Nipah multiplies by the thousands and the infection process begins," he said.

Flu-like, but worse

Nipah virus, identified 14 years ago during an epidemic in Malaysia, causes flu-like symptoms and convulsions due to swelling of the brain. Outbreaks of the virus inflict a high mortality rate, usually killing more humans than are spared.

Because the pathogen spreads from certain animals to humans and from person to person, the World Health Organization has identified it as a potential source of a global pandemic.

And it might start with a single cough.

As the movie "Contagion" portrays, the microbe is believed to have spread from the tropical to pigs before making a leap to humans.

The disease hasn't been diagnosed outside remote areas of Southeast Asia. But the concern is that the pathogen could spread to other regions if an infected person travels on a plane or if the fruit bat - with its six-foot wing span - ventures farther in search of food and habitat. The virus doesn't sicken the bats; instead they are reservoir hosts.

Higher death tolls

"Since Nipah virus was identified, we've seen at least one outbreak each year, each resulting in a high percentage of deaths," said Aguilar-Carreno.

Most alarming is this year's outbreak in Bangladesh where the virus killed 21 of the 24 people diagnosed, according to that country's Institute of Epidemiology, Disease Control and Research. Victims' ages were 8 months to 60 years.

Whether the virus is becoming more deadly or improved surveillance is finding more cases, "it's too soon to know," said virologist Paul Rota of the U.S. Centers for Disease Control in Atlanta, which classifies the pathogen in the same hot-agent category as Ebola and smallpox.

Not only does the virus spread among different species, but there is no vaccine or treatment. And that's where Aguilar-Carreno's work comes in.

"Our study reveals the intricate steps that one Nipah undertakes in order to enter a 10,000-times-larger healthy cell," he said. "The more we understand about Nipah's molecular mechanics, the more likely scientists can develop a drug to block it from infecting."

Explore further: Intense human settlement and forest disruption linked to virus outbreak

More information: www.plospathogens.org/article/ … journal.ppat.1003770

Related Stories

Intense human settlement and forest disruption linked to virus outbreak

December 3, 2013
(Medical Xpress)—A new study in the American Journal of Tropical Medicine shows that the deadly Nipah virus in Bangladesh is infecting people only in areas with significant deforestation and high population density. Although ...

Biogeographic barrier that protects Australia from avian flu does not stop Nipah virus

April 24, 2013
An invisible barrier separates land animals in Australia from those in south-east Asia may also restrict the spillover of animal-borne diseases like avian flu, but researchers have found that fruit bats on either side of ...

Researchers capture structure of key part of deadly Nipah virus

November 18, 2013
What began as a summer internship project designed for an undergraduate student evolved into a one-year study of one of the deadliest, but little known viruses. Researchers at The Scripps Research Institute (TSRI) have now ...

New bat virus could hold key to Hendra virus

August 2, 2012
Australian scientists have discovered a new virus in bats that could help shed light on how Hendra and Nipah viruses cause disease and death in animals and humans. The new virus - named 'Cedar' after the Queensland location ...

Griffith University tackles deadly Hendra virus

June 4, 2012
Australian medical researchers are on the brink of an effective human treatment for the deadly Hendra virus, and potentially the closely related Nipah virus, which has killed more than two hundred people in South East Asia.

Recommended for you

Phase 3 trial confirms superiority of tocilizumab to steroids for giant cell arteritis

July 26, 2017
A phase 3 clinical trial has confirmed that regular treatment with tocilizumab, an inhibitor of interleukin-6, successfully reduced both symptoms of and the need for high-dose steroid treatment for giant cell arteritis, the ...

A large-scale 'germ trap' solution for hospitals

July 26, 2017
When an infectious airborne illness strikes, some hospitals use negative pressure rooms to isolate and treat patients. These rooms use ventilation controls to keep germ-filled air contained rather than letting it circulate ...

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

Male hepatitis B patients suffer worse liver ailments, regardless of lifestyle

July 25, 2017
Why men with hepatitis B remain more than twice as likely to develop severe liver disease than women remains a mystery, even after a study led by a recent Drexel University graduate took lifestyle choices and environments ...

Mind-body therapies immediately reduce unmanageable pain in hospital patients

July 25, 2017
Mindfulness training and hypnotic suggestion significantly reduced acute pain experienced by hospital patients, according to a new study published in the Journal of General Internal Medicine.

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.