Laying siege to chemoresistance

December 13, 2013

To date, tests have only been carried out on cells, but a piece of research conducted by the Department of Genetics at the UPV/EHU's Faculty of Medicine in collaboration with MD Anderson and the CNIO is opening up the door for the treatment of lymphoma types that have a lower survival rate. The study of the molecular characteristics of the tumours would enable molecules that are altered in a specific way to be identified and turned into new therapeutic targets that would improve the prognosis of patients with chemoresistant lymphomata.

But there is still a long way to go. The experimental work has been done on cells. Not on mice, let alone on humans. However, a joint piece of research between the UPV/EHU-University of the Basque Country, the MD Anderson Cancer Center Madrid ―the Spanish subsidiary of the MD Anderson Cancer Center of Houston (Texas)―, and the National Centre for Oncological Research (CNIO) is suggesting that the study of gene expression in chemoresistant lymphomata could help to identify possible therapeutic targets and open up new channels of treatment.

There are still some lymphoproliferative diseases with limited therapeutic options, mainly due to the absence of targeted therapies. So although the classical Hodgkin lymphoma (HL) responds to conventional therapy based on anthracyclines (of the ABVD type) in 70 – 80 % of cases, there is a group of patients who fail to respond, and 30 % succumb to this disease. On the other hand, peripheral T-cell lymphomata (PTCL) make up a heterogeneous and highly aggressive group for which there is currently no effective therapy. These patients are also treated with therapies based on anthracyclines (of the CHOP type), but their response is very poor: global survival depends on the PTCL subtype, but on average 70% of these patients die. So what is needed are studies that identify new therapeutic targets in refractory HL and PTCL to improve the prognosis of these patients with chemoresistant lymphomata.

So this project sought to detect the alterations that take place in these tumours and which could be targeted by drugs. The thesis "New potential therapeutic targets in conventional therapy-resistant lymphomata" (Potenciales nuevas dianas terapéuticas en linfomas resistentes a la terapia convencional), read by Esperanza Martin recently and co-supervised by África García-Orad, tenured lecturer in genetics of the UPV/EHU, and Juan Fernando García, Head of Research at MD Anderson, has submitted the initial conclusions of this research.

In each cancer alterations take place in the genes, in their structure or in their regulation. These variations are translated into modifications in the structure of specific proteins or in their quantity. These specific changes in the proteins of a specific cancer type are known as its molecular signature. Once the specific mutation of the disease or its molecular signature has been identified, a specific drug to fight these alterations can be designed. The first in this type of treatments was Imatinib. This drug is used to combat chronic myeloid leukaemia: it blocks the active centre of a protein, the kinase, the structure of which has been altered and which causes the excessive activation of the cell cycle. In the case of chemoresistant HL, histone deacetylase inhibitors (HDACi) have been identified as agents that could reverse this . What is more, the researchers have discovered that by focussing on other molecular alterations, the effect would be boosted, thereby making it possible to determine which combination is the most suitable to treat these kinds of lymphomata that are resistant to conventional chemotherapy.

Towards personalised medicine

Although still in an experimental phase, the preliminary results of this study constitute another step forward in the field of personalised medicine. The main aim of pharmacogenetics and pharmacogenomics is to optimize the treatment of diseases on an individual level and move towards safer and more efficient personalised therapy. The recent advances in genetics and molecular biology have expanded knowledge about the biology of some tumour types enormously; this has made it possible to improve the therapeutic possibilities and expectations of these patients, a case in point has been Imatinib in chronic myeloid leukaemia, one of the first examples of drugs designed on the basis of genetic studies. Another example of the advances in the effectiveness of personalised treatment is breast cancer. The detection of the genetic alteration responsible for the overexpression of the epidermal 2 growth factor, present in 20% of the cases diagnosed, makes it possible already to prescribe a specific treatment.

Pharmacogenetics and pharmacogenomics could provide knowledge to select those patients who are going to respond to treatment; this would enable the most suitable medication and/or the most appropriate dose for each patient to be selected. In other words, selecting the right drug and the right dose for each patient.

Explore further: First randomized trial of targeted cancer medicine in all tumor types

Related Stories

First randomized trial of targeted cancer medicine in all tumor types

September 11, 2013
A further step along the road to the personalisation of cancer medicine, where treatment is based on the individual molecular characteristics of tumours rather than their primary site, will be presented at the 2013 European ...

Potential new treatments for acute myeloid leukemia

November 25, 2013
Two separate studies yield key findings for the prevention, diagnosis, treatment and cure for acute myeloid leukemia (AML). AML is a group of heterogeneous diseases with considerable diversity in terms of genetic abnormalities. ...

Researchers discover new genetic errors that could cause one of the most deadly leukaemias

October 23, 2013
Acute dendritic leukaemia is a rare type of leukaemia, but one with the worst prognosis—the average patient survival rate is just 12-14 months—that is difficult to treat. Juan Cruz Cigudosa's team, from the Spanish National ...

Battling defiant leukemia cells

October 7, 2013
Two gene alterations pair up to promote the growth of leukemia cells and their escape from anti-cancer drugs, according to a study in The Journal of Experimental Medicine.

Targeted antibody, immune checkpoint blocker rein in follicular lymphoma

December 11, 2013
One drug attacks tumor cells directly, the other treats the immune system by taking the brakes off T cell response. Together, they put half of the patients with relapsed follicular lymphoma into complete remission in a phase ...

Systems medicine paves the way for improved treatment for leukemia patients

December 12, 2013
A multi-disciplinary team of researchers at the Institute for Molecular Medicine Finland, FIMM, and the Helsinki University Central Hospital has developed a novel individualized systems medicine (ISM) strategy which enables ...

Recommended for you

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.