Ultrasound microscopy: An aid for surgeons to make the invisible, visible

December 10, 2013 by Adarsh Sandhu, Toyohashi University of Technology
Ultrasound microscopy: An aid for surgeons to make the invisible, visible
Professor Naohiro Hozumi

Professor Naohiro Hozumi of Toyohashi Tech is developing the technology to monitor living tissue and cell specimens for medical purposes.

An ultrasonic microscope emits a high frequency sound at an object, and the reflected sound captured by its lens is converted into two dimensional image of the object under scrutiny. Ultrasonic microscopes have a wide range of applications including determining the presence of otherwise invisible defects in components used in the automobile, aeronautical, and construction industries.

Professor Naohiro Hozumi of Toyohashi Tech's Department of Electrical and Electronic Information Engineering is developing the technology to monitor living and cell specimens for medical purposes. During surgical operations doctors often stop to inspect tissue taken from a patient's body for possible remnants signs of disease such as cancer. To do this, pathologists use an to examine a slice of tissue taken from the periphery of what should be a healthy area.

Now, typical tissues are optically transparency, and must be stained for inspection by an optical microscope. Pathologists can take several hours or possibly several days to evaluate the tissue for the presence of cancerous regions.

"But with my ultrasound microscope, staining is not required because the spectrum of the sound coming back from the tissue changes when the tissue is cancerous, which in turn changes the image," says Hozumi. "So instead of waiting an hour or more, tissue can be tested almost immediately. Also, because the reflected sound varies depending on the type of cancer, a doctor can interpret the type of disease from the image by comparing it to a reference material."

Whereas an optical microscope is limited to providing only a relative analysis that is based on contrasting shapes of healthy and , the ultrasound technique provides quantitative results based directly on the acoustic properties of tissues.

"By working with quantitatively, we can create a database of information," says Hozumi. "Then, a doctor can use the database to compare the information of a patient's tissue specimen and readily know whether it is cancerous or not."

This type of procedure requires mounting the removed tissue on a plate for examination under the . Now Hozumi and his colleagues are going a step further by developing an ultrasonic probe. This could be used to directly investigate a patient's condition immediately after surgery to make sure no cancerous cells remain, and without the need to remove more tissue. The Toyohashi Tech researchers are currently working with microelectromechanical system (MEMS) and semiconductor engineers to develop such devices.

Explore further: Study finds more accurate method to diagnose pancreatic cancer

Related Stories

Study finds more accurate method to diagnose pancreatic cancer

November 6, 2013
Researchers from the University of Missouri have found a more accurate laboratory method for diagnosing pancreatic cancer, the fourth leading cause of cancer death in the United States. The disease causes more than 38,000 ...

Recognizing cancer diseases at an early stage: Researchers develop label-free automatic cancer diagnostics

October 25, 2013
Researchers at the Ruhr-Universität Bochum (RUB) have developed a new spectroscopic method to support pathologists in diagnosing cancer. In the Journal of Biophotonics and the Analyst they compared conventional procedures ...

Speeding up cancer diagnosis during surgery

September 17, 2013
Tissue-conserving cancer surgery is a highly skilled procedure which involves time-consuming tissue preparation to detect the margins of cancerous tissue. The goal is to remove as much of the tumour as possible while sparing ...

Technology that helps surgeons see cancer tissue being tested

October 23, 2013
OnTarget Laboratories LLC has teamed with partners in academia to test a novel optical imaging technology developed at Purdue University that could help surgeons see cancer tissue during surgery.

Recommended for you

Drug may help surgical patients stop opioids sooner

December 13, 2017
(HealthDay)—Opioid painkillers after surgery can be the first step toward addiction for some patients. But a common drug might cut the amount of narcotics that patients need, a new study finds.

Children best placed to explain facts of surgery to patients, say experts

December 13, 2017
Getting children to design patient information leaflets may improve patient understanding before they have surgery, finds an article in the Christmas issue of The BMJ.

Burn victim saved by skin grafts from identical twin (Update)

November 23, 2017
A man doomed to die after suffering burns across 95 percent of his body was saved by skin transplants from his identical twin in a world-first operation, French doctors said Thursday.

Is a common shoulder surgery useless?

November 21, 2017
(HealthDay)—New research casts doubt on the true effectiveness of a common type of surgery used to ease shoulder pain.

Study shows electric bandages can fight biofilm infection, antimicrobial resistance

November 6, 2017
Researchers at The Ohio State University Wexner Medical Center have shown - for the first time - that special bandages using weak electric fields to disrupt bacterial biofilm infection can prevent infections, combat antibiotic ...

Obesity increases incidence, severity, costs of knee dislocations

November 3, 2017
A new study of more than 19,000 knee dislocation cases in the U.S. between 2000 and 2012 provides a painful indication of how the nation's obesity epidemic is changing the risk, severity and cost of a traumatic injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.