Research suggests a blood test to locate gene defects associated with cancer may not be far off

January 8, 2014

Some surprising research findings from scientists at The University of Texas MD Anderson Cancer Center suggest it's possible a simple blood test could be developed to determine whether gene mutations associated with pancreatic cancer exist without the need of locating and testing tumor tissue. This appears possible following the discovery that tiny particles the size of viruses called 'exosomes,' which are shed by cancer cells into the blood, contain the entire genetic blueprint of cancer cells. By decoding this genomic data and looking for deletions and mutations associated with cancer, the research team believes this discovery could be translated into a test that helps physicians detect cancer and treat patients. The findings are based on research led by Raghu Kalluri, M.D., Ph.D., chairman and professor in MD Anderson's Department of Cancer Biology. The research results appear in the current online edition of the Journal of Biological Chemistry.

"At the present time, there is no single blood test that can screen for all related DNA defects," said Kalluri. "In many cases, current protocols require a tumor sample to determine whether gene mutations and deletions exist and therefore determine whether the tumor itself is cancerous or benign. To procure tumor tissue, one needs to know that a tumor exists and if so, is it accessible for sample collection or removal? Finally, there are always risks and significant costs associated with surgical procedures to acquire tumor tissue."

Historically, researchers were aware these miniscule particles existed and that they carried nucleic acids and proteins. It was also believed that exosomes carried small portions of the person's DNA. However, upon further investigation, the MD Anderson research team was surprised to learn that the person's entire double-stranded genomic DNA spanning all chromosomes can be found in exosomes, including those mutated chromosomes that cause various cancers. Furthermore, Kalluri and colleagues discovered that DNA derived from exosomes carried the same cancer-related genetic mutations compared to the taken from tumor.

"Because different forms of cancer are associated with different chromosomal mutations , we believe analysis of exosome DNA taken from blood samples may not only help determine the presence of a somewhere in the body but also identify mutations without a need for tumor sample," added Kalluri. "We also believe this "fingerprint" will help lead us to the likely site of the tumor in the body. For instance, certain mutation spectrums would suggest or a brain-based tumor. While there is much more work to be conducted to develop such a test, having a tool such as this would increase our abilities to detect cancer in an earlier stage and therefore increase our chances of effective treatment."

"This seminal discovery paves the way for highly sensitive screening for driver mutations of cancer in the blood without the need for biopsy of tissue and importantly, lays the foundation for a new method for the early detection of cancer when the chance for cure is greatest," said MD Anderson President Ronald A. DePinho, M.D.

Explore further: Rapid method to detect BRAF mutations in cancer tissue samples

Related Stories

Rapid method to detect BRAF mutations in cancer tissue samples

October 22, 2013
A new diagnostic platform to detect BRAF mutations in melanoma and other cancer types is faster and more accurate compared with the standard method currently used in clinics, and this could help accelerate diagnosis and treatment, ...

New cell mechanism discovery key to stopping breast cancer metastasis

January 2, 2014
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah discovered a cellular mechanism that drives the spread of breast cancer to other parts of the body (metastasis), as well as a therapy which blocks ...

Researchers track lethal prostate cancer to determine clonal origin

October 26, 2013
Prostate cancer has variable manifestations, ranging from relatively benign localized tumors to widespread life-threatening metastases. The origin of most prostate cancer metastases can be traced back to the primary tumor; ...

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Next-generation genome screening is step toward precision cancer medicine for lung cancer

November 14, 2013
Precision cancer medicine has taken a strong step forward at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) with the addition ...

Study finds known lung cancer oncogenes ALK and ROS1 also drive colorectal cancer

December 17, 2013
A University of Colorado Cancer Center study published online ahead of print in the journal Molecular Cancer Research shows that ALK and ROS1 gene rearrangements known to drive subsets of lung cancer are also present in some ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.