Punctured cell membranes lead to high blood pressure

January 27, 2014

Researchers from the University of Southern Denmark have identified how a mutated protein can lead to holes in a protein sitting in a cell's membrane. Such holes cause high blood pressure, and the discovery can now lead to new and better medication for high blood pressure.

High can be caused by many things - one of them being a specific mutated protein. Now the researchers at University of Southern Denmark have found out exactly what unfortunate events in the human organism are initiated by the mutated protein.

"This knowledge can now lead to new and better medicines for ", says the lead author of a new scientific publication, PhD student Wojciech Kopec from the Center for Biomembrane Physics (MEMPHYS) at the University of Southern Denmark.

He explains that some years ago research colleagues from University of Aarhus found out that a particular mutated protein is associated with high blood pressure. But the exact mechanism at play could not be clarified until now.

Wojciech Kopec and his colleagues, Himanshu Khandelia and Bastien Loubet from Memphys and Hanne Poulsen from University of Aarhus, have now revealed the mechanism at play: The mutated protein leads to the formation of holes in a protein sitting in a cell's membrane, and so the cell can no longer control what is allowed into and out of the cell interior. The holes are made where the cell controls its content of salts. A normal, healthy cell has full control of how much salt () must be removed from within the cell so that it can maintain a perfect salt balance in the organism, it is a part of.

"But when there are holes, sodium ions can penetrate into the cell, so the salt levels go up. Too high salt levels are associated with many diseases, including high blood pressure", explains Wojciech Kopec.

This specific knowledge is particularly useful for the medical industry involved with developing new drugs.

"Medicine is molecules, and therefore it is in principle easy to develop a molecular formula that can close the holes in the membrane", says Wojciech Kopec.

The researchers found the mechanism by running a computer simulation on one of the country's most powerful computer clusters, Horseshoe 6, which is situated at University of Southern Denmark.

Explore further: Discovering Parkinson's cell mechanism

More information: The Molecular Mechanism of Na+, K+-ATPase Malfunction in Mutations Characteristic for Adrenal Hypertension. Wojciech Kopec, Bastien Loubet, Hanne Poulsen, and Himanshu Khandelia. Biochemistry. DOI: 10.1021/bi401425g . Publication Dat. (Web): 15 Jan 2014.

Related Stories

Discovering Parkinson's cell mechanism

November 28, 2013
A new doctoral thesis from University of Stavanger suggests possible explanations of how a specific protein associated with Parkinson's disease (DJ-1) might be implicated in the onset of the disease.

Abnormal activation of a protein may explain deadly link between high salt intake and obesity

September 19, 2011
Dietary salt intake and obesity are two important risk factors in the development of high blood pressure. Each packs its own punch, but when combined, they deliver more damage to the heart and kidneys than the sum of their ...

Too much salt may damage blood vessels, lead to high blood pressure

June 18, 2012
Eating a high-salt diet for several years may damage blood vessels — increasing your risk of developing high blood pressure, according to research reported in the American Heart Association journal Circulation. People ...

Molecular hub links obesity, heart disease to high blood pressure

April 11, 2013
(Medical Xpress)—Obesity, heart disease, and high blood pressure (hypertension) are all related, but understanding the molecular pathways that underlie cause and effect is complicated.

Study supports role for skin sodium in blood pressure regulation

June 3, 2013
It's time to expand the models for blood pressure regulation, according to clinical pharmacologist Jens Titze, M.D. Titze and his colleagues have identified a new cast of cells and molecules that function in the skin to control ...

Recommended for you

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.